Impedance mismatching between different phases of a multiphase transformer is generally observed e.g., in a three-phase to seven-phase transformer, due to an unequal number of turns in different coils. This mismatching introduces error in the study of per phase equivalent circuit diagrams as well as induces an imbalance in output voltages and currents. Therefore, it is a challenging task to develop a per-phase equivalent circuit for the secondary and primary sides (In some cases) too. This paper proposes an artificial intelligence optimization technique like PSO based modeling of the per-phase equivalent circuit of the secondary side. This paper deals with the modeling and simulation of a three-phase to seven-phase power transformer using Artificial Intelligence technique like particle swarm optimization (PSO) and Genetic Algorithm (GA). The proposed model is optimized through PSO and GA algorithms and tested for minimum voltage error in each phase. The proposed model is designed and the objective function is optimized by PSO & GA in MATLAB environment. It is found that the optimized model can be effectively implemented as a per-phase equivalent circuit for the secondary side.
This paper proposes a novel multiphase transformer connection scheme which converts three phase balanced AC input to seven phase balanced AC output. Generalized theory to convert a three phase utility supply into any number of phases is presented. Based on the proposed generalized principle, a three phase to seven phase power converting transformer design is presented with connection scheme, analysis and simulation and experimental results of the proposed three phase to seven phase conversion transformer. The proposed transformer in this paper is analyzed and compared with the connection scheme for seven phase available in the literature. The connection scheme is found to have higher power density, lower core area and lower core requirement as compared to the available connection scheme of the same rating. Impedance mismatching between different phases of the transformer is observed in the three phase to seven phase transformer available in the literature. As this mismatching introduces error in study of per phase equivalent circuit diagrams as well as imbalance in voltage and currents. The present design also addresses the impedance mismatching issue and reduces mismatching in the proposed transformer design. A prototype of the proposed system is developed and waveforms are presented. The proposed design is verified using simulation and validated using experimental approach.
Recently, the superiority of multi-phase systems in comparison to three-phase energy systems has been demonstrated with regards to power generation, transmission, distribution, and utilization in particular. Generally, two techniques, specifically semiconductor converter and special transformers (static and passive transformation) have been commonly employed for power generation by utilizing multi-phase systems from the available three-phase power system. The generation of multi-phase power at a fixed frequency by utilizing the static transformation method presents certain advantages compared to semiconductor converters such as reliability, cost-effectiveness, efficiency, and lower total harmonics distortion (THD). Multi-phase transformers are essential to evaluate the parameters of a multi-phase motor, as they require a multi-phase signal that is pure sine wave in nature. However, multi-phase transformers are not suitable for variable frequency applications. Moreover, they have shortcomings with regard to impedance mismatching, the unequal number of turns which lead to inaccurate results in per phase equivalent circuits, which results in an imbalance output in phase voltages and currents. Therefore, this paper aims to investigate multi-phase power transformation from a three-phase system and examine the different static multi-phase transformation techniques. In line with this matter, this study outlines various theories and configurations of transformers, including three-phase to five-, seven-, eleven-, and thirteen-phase transformers. Moreover, the review discusses impedance mismatching, voltage unbalance, and per phase equivalent circuit modeling and fault analysis in multi-phase systems. Moreover, various artificial intelligence-based optimization techniques such as particle swarm optimization (PSO) and the genetic algorithm (GA) are explored to address various existing issues. Finally, the review delivers effective future suggestions that would serve as valuable opportunities, guidelines, and directions for power engineers, industries, and decision-makers to further research on multi-phase transformer improvements towards sustainable operation and management.
Although brushless direct current motor (BLDCM) drives are becoming more popular in industrial and commercial applications, there are still significant difficulties and unresolved research issues that must be addressed. In BLDCM drives, commutation current ripple (CCR) and diode freewheeling during non-commutation zone (NCZ) are the major challenges. To overcome these limitations, this paper proposes a novel PWM-Model Antiseptic Control (PWM-MAC) technique to alleviate the freewheeling of the diode. The proposed PWM technique is used to alleviate the diode freewheeling in the NCZ, whereas the DCLV circuit is utilized to obtain variable DC-link voltage to address the CCR in the CZ. The MATLAB/Simulink results are included along with experimental results obtained from a laboratory prototype of 325 W. The proposed module reduces the current ripple by 31.7% and corresponding torque ripples are suppressed by approximately 32.5%. This evidences the performance of the proposed control technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.