We propose an efficient sparsity-preserving reduced-order modelling approach for index-1 descriptor systems extracted from large-scale power system models through two-sided projection techniques. The projectors are configured by utilizing Gramian based singular value decomposition (SVD) and Krylov subspace-based reduced-order modelling. The left projector is attained from the observability Gramian of the system by the low-rank alternating direction implicit (LR-ADI) technique and the right projector is attained by the iterative rational Krylov algorithm (IRKA). The classical LR-ADI technique is not suitable for solving Riccati equations and it demands high computation time for convergence. Besides, in most of the cases, reduced-order models achieved by the basic IRKA are not stable and the Riccati equations connected to them have no finite solution. Moreover, the conventional LR-ADI and IRKA approach not preserves the sparse form of the index-1 descriptor systems, which is an essential requirement for feasible simulations. To overcome those drawbacks, the fitting of LR-ADI and IRKA based projectors from left and right sides, respectively, desired reduced-order systems attained. So that, finite solution of low-rank Riccati equations, and corresponding feedback matrix can be executed. Using the mechanism of inverse projection, the Riccati-based optimal feedback matrix can be computed to stabilize the unstable power system models. The proposed approach will maintain minimized ℌ2 -norm of the error system for reduced-order models of the target models.
In this paper, we explore the Riccati-based boundary feedback stabilization of the incompressible Navier–Stokes flow via the Krylov subspace techniques. Since the volume of data derived from the original models is gigantic, the feedback stabilization process through the Riccati equation is always infeasible. We apply a
ℋ
2
optimal model-order reduction scheme for reduced-order modeling, preserving the sparsity of the system. An extended form of the Krylov subspace-based two-sided iterative algorithm (TSIA) is implemented, where the computation of an equivalent Sylvester equation is included for minimizing the computation time and enhancing the stability of the reduced-order models with satisfying the Wilson conditions. Inverse projection approaches are applied to get the optimal feedback matrix from the reduced-order models. To validate the efficiency of the proposed techniques, transient behaviors of the target systems are observed incorporating the tabular and figurative comparisons with MATLAB simulations. Finally, to reveal the advancement of the proposed techniques, we compare our work with some existing works.
This paper discusses model order reduction of large sparse secondorder index-3 differential algebraic equations (DAEs) by applying Iterative Rational Krylov Algorithm (IRKA). In general, such DAEs arise in constraint mechanics, multibody dynamics, mechatronics and many other branches of sciences and technologies. By deflecting the algebraic equations the secondorder index-3 system can be altered into an equivalent standard second-order system. This can be done by projecting the system onto the null space of the constraint matrix. However, creating the projector is computationally expensive and it yields huge bottleneck during the implementation. This paper shows how to find a reduce order model without projecting the system onto the null space of the constraint matrix explicitly. To show the efficiency of the theoretical works we apply them to several data of second-order index-3 models and experimental resultants are discussed in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.