Climate change and severe emission regulations in many countries demand fuel and engine researchers to explore sustainable fuels for internal combustion engines. Natural gas could be a source of sustainable fuels, which can be produced from renewable sources. This article presents a complete overview of the liquefied natural gas (LNG) as a potential fuel for diesel engines. An interesting finding from this review is that engine modification and proper utilization of LNG significantly improve system efficiency and reduce greenhouse gas (GHG) emissions, which is extremely helpful to sustainable development. Moreover, some major recent researches are also analyzed to find out drawbacks, advancement and future research potential of the technology. One of the major challenges of LNG is its higher flammability that causes different fatal hazards and when using in dual-fuel engine causes knock. Though researchers have been successful to find out some ways to overcome some challenges, further research is necessary to reduce the hazards and make the fuel more effective and environment-friendly when using as a fuel for a diesel engine.
This research work investigates diesel combustion and exhaust emissions with additives addition to conventional diesel fuel in a four-stroke naturally aspirated direct injection (DI) diesel engine. The additives include DGM, and liquid cerium. The results show that with the addition of DGM to diesel fuel, brake specific energy consumption (BSEC) and all diesel emissions are significantly reduced. The volumetric blending ratios of additives to diesel fuel are 0, 25, 50, 75 and 100%. All emissions including smoke emissions decrease with the increase in oxygen content in the fuel and it is noted that smoke emission completely disappeared at an oxygen content of 36 wt–%. The reason for improvement in BSEC with the addition of additives to base diesel fuel is the improvement of degree of constant volume combustion, and the reduction of the cooling loss. Engine noise and odor concentrations are remarkably reduced with diesel-additive blends. Significant improvement in BSEC and exhaust emissions is not only found at medium load condition but also at high load condition.
Key words: Diesel engine, DGM, emissions, BSEC, and cooling loss
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.