Exosomes are membrane-enveloped nanosized (30–150 nm) extracellular vesicles of endosomal origin produced by almost all cell types and encompass a multitude of functioning biomolecules. Exosomes have been considered crucial players of cell-to-cell communication in physiological and pathological conditions. Accumulating evidence suggests that exosomes can modulate the immune system by delivering a plethora of signals that can either stimulate or suppress immune responses, which have potential applications as immunotherapies for cancer and autoimmune diseases. Here, we discuss the current knowledge about the active biomolecular components of exosomes that contribute to exosomal function in modulating different immune cells and also how these immune cell-derived exosomes play critical roles in immune responses. We further discuss the translational potential of engineered exosomes as immunotherapeutic agents with their advantages over conventional nanocarriers for drug delivery and ongoing clinical trials.
In donation after circulatory death (DCD) organ transplantation, normothermic regional perfusion (NRP) restores oxygenated blood flow following cardiac arrest and reverses warm ischemia. Recently, NRP has also been used to help recover DCD hearts in addition to the abdominal organs. While DCD donation has increased the number of abdominal organs and lungs pool, it has not been able to increase the number of heart transplants, despite the fact that it has the potential to increase the number of heart transplants by 15-30%. Thoracoabdominal normothermic regional perfusion makes heart transplantation feasible and permits assessing heart function before an organ procurement without affecting the preservation of abdominal organs. NRP can be used in two ways for DCD donor heart transplants: normothermic regional perfusion followed by machine perfusion (NRP-MP) and normothermic regional perfusion followed by static cold storage (NRP-SCS). Normothermic regional perfusion is an emerging technology, a cost-effective alternative in donation after circulatory death (DCD), and will increase the pool of donors in heart transplantation.
The scarcity of donor hearts continues to be a challenge in transplants for advanced heart failure patients. With an increasing number of patients on the waiting list for a heart transplant, the discrepancy in the number between donors and recipients is gradually increasing and poses a new challenge that plagues the healthcare systems when it comes to the heart. Several technologies have been developed to expand the donor pool in recent years. One such method is the organ care system (OCS). The standard method of organ preservation is the static cold storage (SCS) method which allows up to four hours of safe preservation of the heart. However, beyond four hours of cold ischemia, the incidence of primary graft dysfunction increases significantly. OCS keeps the heart perfused close to the physiological state beyond the four hours with superior results, which allows us to travel further and longer distances, leading to expansion in the donor pool. In this review, we discuss the OCS system, its advantages, and shortcomings.
Mycotic thoracic aortic aneurysm (MTAA) is an aneurysm of the aorta caused by infection of the vessel tissue through microbial inoculation of the diseased aortic endothelium. It is most commonly caused by bacteria. Rarely, it can be caused by fungi. However, viral aortic aneurysm has never been reported. Depending on the area and time period investigated, the infections organism discovered may vary significantly. Little is known about the natural history of MTAA due to its rarity. It is not known if they follow the same pattern as other TAAs. However, it is unclear whether MTAA follows a similar clinical course. The combination of clinical presentation, laboratory results, and radiographic results are used to make the diagnosis of MTAA. Treatment of MTAA is complex since patients frequently present at a late stage, frequently with fulminant sepsis, as well as concomitant complications such as aneurysm rupture. While medical treatment, including antibiotics, is recommended, surgery is still the mainstay of management. Surgery to treat MTAA is complicated and carries a high risk of morbidity and mortality and includes both open repairs and endovascular ones. In this review, we explore the etiology, pathogenesis, clinical presentations, diagnostic modalities as well as treatment management available for MTAA.
This review aims to show and illustrate the history, current, ethical considerations, and limitations concerning xenotransplantation. Due to the current shortage of available donor organs for transplantation, many alternative sources are being examined to solve the donor shortage. One of them is xenotransplantation which refers to the transplantation of organs from one species to another. Compared to other nonhuman primates (NHP), pigs are ideal species for organ harvesting as they rapidly grow to human size in a handful of months. There is much advancement in the genetic engineering of pigs, which have hearts structurally and functionally similar to the human heart. The role of genetic engineering is to overcome the immune barriers in xenotransplantation and can be used in hyperacute rejection and T cellmediated rejection. It is technically difficult to use large animal models for orthotopic, life-sustaining heart transplantation. Despite the fact that some religious traditions, such as Jewish and Muslim, prohibit the ingestion of pork products, few religious leaders consider that donating porcine organs is ethical because it saves human life. Although recent technologies have lowered the risk of a xenograft producing a novel virus that causes an epidemic, the risk still exists. It has major implications for the informed consent procedure connected with clinical research on heart xenotransplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.