Objective There is considerable epidemiological and neuropsychological evidence that attention deficit hyperactivity disorder (ADHD) is best considered dimensionally, lying at the extreme end of a continuous distribution of symptoms and underlying cognitive impairments. The authors investigated whether cortical brain development in typically developing children with symptoms of hyperactivity and impulsivity resembles that found in the syndrome of ADHD. Specifically, they examined whether a slower rate of cortical thinning during late childhood and adolescence, which they previously found in ADHD, is also linked to the severity of symptoms of hyperactivity and impulsivity in typically developing children. Method In a longitudinal analysis, a total of 193 typically developing children with 389 neuroanatomic magnetic resonance images and varying levels of symptoms of hyperactivity and impulsivity (measured with the Conners’ Parent Rating Scale) were contrasted with 197 children with ADHD with 337 imaging scans. The relationship between the rates of regional cortical thinning and severity of symptoms of hyperactivity/impulsivity was determined. Results Youth with higher levels of hyperactivity/impulsivity had a slower rate of cortical thinning, predominantly in prefrontal cortical regions, bilaterally in the middle frontal/premotor gyri, extending down the medial prefrontal wall to the anterior cingulate; the orbitofrontal cortex; and the right inferior frontal gyrus. For each increase of one point in the hyperactivity/impulsivity score, there was a decrease in the rate of regional cortical thinning of 0.0054 mm/year (SE=0.0019 mm/year). Children with ADHD had the slowest rate of cortical thinning. Conclusions Slower cortical thinning during adolescence characterizes the presence of both the symptoms and syndrome of ADHD, providing neurobiological evidence for dimensionality of the disorder.
Background Childhood Attention Deficit Hyperactivity Disorder (ADHD) persists into adulthood in around half of those affected (1), constituting a major public health challenge(1). No known demographic, clinical or neuropsychological factors robustly explain clinical course, directing our focus to the brain. Herein, we link the trajectories of cerebral cortical development during childhood and adolescence with the severity of adult ADHD. Methods Using a longitudinal study design, 92 participants with AHD had childhood (mean 10.7 years, SD 3.3) and adult clinical assessments (mean 23.8 years, SD 4.3) with repeated neuroanatomic magnetic resonance imaging. Contrast was made against 184 matched typically developing volunteers. Results ADHD persisted in 34 (37%) subjects and adult symptom severity was linked to cortical trajectories. Specifically as the number of adult symptoms increased, particularly inattentive symptoms, so did the rate of cortical thinning in the medial and dorsolateral prefrontal cortex. For each increase of one symptom of adult ADHD the rate of cortical thinning increased by 0.0018mm (SE 0.0004, t=4.2, p<0.0001), representing a 5.6% change over the mean rate of thinning for the entire group. These differing trajectories resulted in a convergence towards typical dimensions among those who remitted and a fixed, non-progressive deficit in persistent ADHD. Notably, cortical thickening or minimal thinning (greater than -0.007mm/year) was found exclusively among individuals who remitted. Conclusion Adult ADHD status is linked with the developmental trajectories of cortical components of networks supporting attention, cognitive control and the default mode network. This informs our understanding of the developmental pathways to adult ADHD.
Background-It was recently found that the development of typical patterns of prefrontal, but not posterior, cortical asymmetry is disrupted in right handed youth with attention-deficit/ hyperactivity disorder (ADHD). Using longitudinal data, we tested the hypothesis that there would be a congruent disruption in the growth of the anterior corpus callosum, which contains white matter tracts connecting prefrontal cortical regions.
The age at which a parent has a child impacts the child's cognition and risk for mental illness. It appears that this risk is curvilinear, with both age extremes associated with lower intelligence and increased prevalence of some neuropsychiatric disorders. Little is known of the neural mechanisms underpinning this phenomenon. We extracted lobar volumes, surface areas, and cortical thickness from 489 neuroanatomic magnetic resonance images acquired on 171 youth. Using linear mixed model regression, we determined the association between parental age and offspring's neuroanatomy, adjusting for offspring's age, sex, intelligence, and parental socioeconomic class. For gray matter volumes, quadratic paternal and maternal age terms contributed significantly (maternal quadratic age effect: t = -2.2, P = 0.03; paternal quadratic age effect: t = -2.4, P = 0.02) delineating an inverted "U" relationship between parental age and gray matter volume. Cortical volume increased with both advancing paternal and maternal age until around the early 30s after which it fell. Paternal age effects were more pronounced on cortical surface area, whereas maternal age impacted more on cortical thickness. There were no significant effects of parental age on white matter volumes. These parental age effects on cerebral morphology may form part of the link between parental age extremes and suboptimal neurocognitive outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.