DNA barcoding is a powerful tool for species detection, identification and discovery. Metazoan DNA barcoding is primarily based upon a specific region of the cytochrome c oxidase subunit I gene that is PCR amplified by primers HCO2198 and LCO1490 ('Folmer primers') designed by Folmer et al. (Molecular Marine Biology and Biotechnology, 3, 1994, 294). Analysis of sequences published since 1994 has revealed mismatches in the Folmer primers to many metazoans. These sequences also show that an extremely high level of degeneracy would be necessary in updated Folmer primers to maintain broad taxonomic utility. In primers jgHCO2198 and jgLCO1490, we replaced most fully degenerated sites with inosine nucleotides that complement all four natural nucleotides and modified other sites to better match major marine invertebrate groups. The modified primers were used to amplify and sequence cytochrome c oxidase subunit I from 9105 specimens from Moorea, French Polynesia and San Francisco Bay, California, USA representing 23 phyla, 42 classes and 121 orders. The new primers, jgHCO2198 and jgLCO1490, are well suited for routine DNA barcoding, all-taxon surveys and metazoan metagenomics.
In the field of molecular biology, laboratory information management systems (LIMSs) have been created to track workflows through a process pipeline. For the purposes of DNA barcoding, this workflow involves tracking tissues through extraction, PCR, cycle sequencing, and consensus assembly. Importantly, a LIMS that serves the DNA barcoding community must link required elements for public submissions (e.g., primers, trace files) that are generated in the molecular lab with specimen metadata. Here, we demonstrate an example workflow of a specimen's entry into the LIMS database to the publishing of the specimen's genetic data to a public database using Geneious bioinformatics software. Throughout the process, the connections between steps in the workflow are maintained to facilitate post-processing annotation, structured reporting, and fully transparent edits to reduce subjectivity and increase repeatability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.