The role of free radical-mediated reactions in human neuropathology continues to attract significant interest. Oxidative injury produced by free radicals may play a role in the initiation and progression of epilepsy and, therapies aimed at reducing oxidative stress may ameliorate tissue damage and favorably alter the clinical course. The prevalence of epilepsy increases with age, and mitochondrial oxidative stress is a leading mechanism of aging and age-related degenerative disease, signifying a further involvement of mitochondrial dysfunction in seizure generation. Oxidative stress occurs when the generation of reactive oxygen species in a system exceeds the body's ability to neutralize and eliminate them, thus creating an imbalance or over abundance of free radicals. Therefore, it is imperative to maintain oxidative balance and control in the brain, and this is tightly regulated by antioxidants. In the last two decades, there has been an explosive interest in the role of antioxidants or neuroprotectants in clinical as well as experimental models of epilepsy. In this regard, the present review is intended to discuss the current state of knowledge pertaining to neuroprotection in epileptic conditions by employing diverse chemical agents including conventional as well as novel anti-epileptic drugs, and to highlight the efficacy of distinct neuroprotective strategies for preventing or treating epilepsy.
Computational assessment of the binding interactions of drugs is an important component of computer-aided drug design paradigms. In this perspective, a set of 30
1-(substituted phenyl)-3-(naphtha[1, 2-d] thiazol-2-yl) urea/thiourea derivatives showing antiparkinsonian activity were docked into inhibitor binding cavity of
human adenosine A2A receptor (AA2AR) to understand their mode of binding interactions in silico. Lamarckian genetic algorithm methodology was employed for
docking simulations using AutoDock 4.2 program. The results signify that the molecular docking approach is reliable and produces a good correlation coefficient
(r2 = 0.483) between docking score and antiparkinsonian activity (in terms of % reduction in catalepsy score). Potent antiparkinsonian agents carried methoxy
group in the phenyl ring, exhibited both hydrophilic and lipophilic interactions with lower energy of binding at the AA2AR. These molecular docking analyses
should, in our view, contribute for further development of selective AA2AR antagonists for the treatment of Parkinson's disease.
Synthesis of 1-(substituted aryl)-3-(thiazol-2-yl)urea derivatives was undertaken as our efforts to discover novel antiparkinsonian agents with improved pharmacological profile in haloperidol-induced catalepsy and oxidative stress in mice. Furfuryl, 2- and/or 3-methoxy substituted phenyl derivatives emerged as potent agents. With exception of 2-chloro,5-trifluoromethyl substituted analog, halogen substituted derivatives exhibited moderate antiparkinsonian activity. The results of biochemical investigations from brain homogenate of mice outline the importance of neuroprotective/antioxidant therapy for Parkinson's disease (PD), supporting the notion that the oxidative stress may play a significant role in the pathophysiological mechanisms underlying PD. Molecular docking studies of these compounds with adenosine A(2A) receptor exhibited very good binding interactions and warrants further studies to confirm their binding with human A(2A) receptor for the design and development of potent antagonists. Parameters for Lipinski's rule of 5 were calculated computationally because pharmacokinetic and metabolic behaviors in the body often are linked to the physical properties of a compound. None of the synthesized compounds violated Lipinski's rule, making them suitable drug candidate for the treatment of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.