Thiazolidinediones are a class of well-established antidiabetic drugs, also named as glitazones. Thiazolidinedione structure has been an important structural domain of research, involving design and development of new drugs for the treatment of type 2 diabetes. Extensive research on the mechanism of action and the structural requirements has revealed that the intended antidiabetic activity in type 2 diabetes is due to their agonistic effect on peroxisome proliferator-activated receptor (PPAR) belonging to the nuclear receptor super family. Glitazones have specific affinity to PPARγ, one of the subtypes of PPARs. Certain compounds under development have dual PPARα/γ agonistic activity which might be beneficial in obesity and diabetic cardiomyopathy. Interesting array of hybrid compounds of thiazolidinedione PPARγ agonists exhibited therapeutic potential beyond antidiabetic activity. Pharmacology and chemistry of thiazolidinediones as PPARγ agonists and the potential of newer analogues as dual agonists of PPARs and other emerging targets for the therapy of type 2 diabetes are presented. This review highlights the possible modifications of the structural components in the general frame work of thiazolidinediones with respect to their binding efficacy, potency, and selectivity which would guide the future research in design of novel thiazolidinedione derivatives for the management of type 2 diabetes.
α-Mangostin (αMN) is a xanthone present in the pericarp of Garcinia mangostana Linn. which is mentioned in Ayurveda and is a widely used functional food supplement. However, its anti-inflammatory mechanism is not well studied. Hence, we used in silico, in vitro and in vivo models to provide information of the mechanism on how αMN could prevent inflammation. Firstly, molecular docking was used to find out the binding energy of αMN with NFκB and COX proteins. Secondly, LPS induced RAW 264.7 cells were used to measure the production of cytokines, the prevention of translocation of NFκB and the inhibition of COX-1 and -2 enzymes. Finally, carrageenan-induced peritonitis was used in vivo to check cytokine release, leukocyte migration and vascular permeability. The in silico modelling had showed that αMN has the lowest binding energy with COX-2 and NFκB proteins. αMN has been found to inhibit the production of PGE2 and nitric oxide, and iNOS protein expression. TNF-α and IL-6 cytokines were inhibited significantly (p < 0.05) at 8 and 14 μg ml-1 concentration. αMN at higher doses inhibits the translocation of NFκB together with suppressing the COX-2 enzymes, but not COX-1. αMN inhibited the total leukocyte migration, predominantly, neutrophils in vivo. The level of TNFα and IL-1β was significantly (p < 0.05) reduced in the peritoneal fluids as measured by ELISA analysis. Taken together, these results demonstrate that αMN acts well as an anti-inflammatory agent via inhibiting the hallmark mechanisms of inflammation. It can be considered as a potential alternative lead compound. In addition, the current results support the traditional use of this fruit pericarp as a functional food.
Polymeric lipid hybrid nanoparticles (PLNs) are core–shell nanoparticles made up of a polymeric kernel and lipid/lipid–PEG shells that have the physical stability and biocompatibility of both polymeric nanoparticles and liposomes. PLNs have emerged as a highly potent and promising nanocarrier for a variety of biomedical uses, including drug delivery and biomedical imaging, owing to recent developments in nanomedicine. In contrast with other forms of drug delivery systems, PLNs have been regarded as seamless and stable because they are simple to prepare and exhibit excellent stability. Natural, semi-synthetic, and synthetic polymers have been used to make these nanocarriers. Due to their small scale, PLNs can be used in a number of applications, including anticancer therapy, gene delivery, vaccine delivery, and bioimaging. These nanoparticles are also self-assembled in a reproducible and predictable manner using a single or two-step nanoprecipitation process, making them significantly scalable. All of these positive attributes therefore make PLNs an attractive nanocarrier to study. This review delves into the fundamentals and applications of PLNs as well as their formulation parameters, several drug delivery strategies, and recent advancements in clinical trials, giving a comprehensive insight into the pharmacokinetic and biopharmaceutical aspects of these hybrid nanoparticles.
Molecular docking and molecular dynamics aided virtual search of OliveNet™ directory identified potential secoiridoids that combat SARS-CoV-2 entry, replication, and associated hyperinflammatory responses. OliveNet™ is an active directory of phytochemicals obtained from different parts of the olive tree, Olea europaea (Oleaceae). Olive oil, olive fruits containing phenolics, known for their health benefits, are indispensable in the Mediterranean and Arabian diets. Secoiridoids is the largest group of olive phenols and is exclusive to the olive fruits. Functional food like olive fruits could help prevent and alleviate viral disease at an affordable cost. A systematized virtual search of 932 conformers of 78 secoiridoids utilizing Autodock Vina, followed by precision docking using Idock and Smina indicated that Nüzhenide oleoside (NZO), Oleuropein dimer (OED), and Dihydro oleuropein (DHO) blocked the SARS-CoV-2 spike (S) protein-ACE-2 interface; Demethyloleuropein (DMO), Neo-nüzhenide (NNZ), and Nüzhenide (NZE) blocked the SARS-CoV-2 main protease (Mpro). Molecular dynamics (MD) simulation of the NZO-S-protein-ACE-2 complex by Desmond revealed stability during 50 ns. RMSD of the NZO-S-protein-ACE-2 complex converged at 2.1 Å after 20 ns. During MD, the interaction fractions confirmed multiple interactions of NZO with Lys417, a crucial residue for inhibition of S protein. MD of DMO-Mpro complex proved its stability as the RMSD converged at 1.6 Å. Analysis of interactions during MD confirmed the interaction of Cys145 of Mpro with DMO and, thus, its inhibition. The docking predicted IC50 of NZO and DMO was 11.58 and 6.44 μM, respectively. Molecular docking and dynamics of inhibition of the S protein and Mpro by NZO and DMO correlated well. Docking of the six-hit secoiridoids to IL1R, IL6R, and TNFR1, the receptors of inflammatory cytokines IL1β, IL6, and TNFα, revealed the anti-inflammatory potential except for DHO. Due to intricate structures, the secoiridoids violated Lipinski's rule of five. However, the drug scores of secoiridoids supported their use as drugs. The ADMET predictions implied that the secoiridoids are non-toxic and pose low oral absorption. Secoiridoids need further optimization and are a suitable lead for the discovery of anti-SARS-CoV-2 therapeutics. For the moment, olive secoiridoids presents an accessible mode of prevention and therapy of SARS-CoV-2 infection.
The role of free radical-mediated reactions in human neuropathology continues to attract significant interest. Oxidative injury produced by free radicals may play a role in the initiation and progression of epilepsy and, therapies aimed at reducing oxidative stress may ameliorate tissue damage and favorably alter the clinical course. The prevalence of epilepsy increases with age, and mitochondrial oxidative stress is a leading mechanism of aging and age-related degenerative disease, signifying a further involvement of mitochondrial dysfunction in seizure generation. Oxidative stress occurs when the generation of reactive oxygen species in a system exceeds the body's ability to neutralize and eliminate them, thus creating an imbalance or over abundance of free radicals. Therefore, it is imperative to maintain oxidative balance and control in the brain, and this is tightly regulated by antioxidants. In the last two decades, there has been an explosive interest in the role of antioxidants or neuroprotectants in clinical as well as experimental models of epilepsy. In this regard, the present review is intended to discuss the current state of knowledge pertaining to neuroprotection in epileptic conditions by employing diverse chemical agents including conventional as well as novel anti-epileptic drugs, and to highlight the efficacy of distinct neuroprotective strategies for preventing or treating epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.