Most of past evaluations of fat-trees for on-chip interconnection networks rely on oversimplifying or even irrealistic architecture and traffic pattern assumptions, and very few layout analyses are available to relieve practical feasibility concerns in nanoscale technologies. This work aims at providing an in-depth assessment of physical synthesis efficiency of fat-trees and at extrapolating siliconaware performance figures to back-annotate in the system-level performance analysis. A 2D mesh is used as a reference architecture for comparison, and a 65 nm technology is targeted by our study. Finally, in an attempt to mitigate the implementation cost of k-ary n-tree topologies, we also review an alternative unidirectional multi-stage interconnection network which is able to simplify the fat-tree architecture and to minimally impact performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.