Saraca asoca
(Roxb.) Willd. (subfamily Detarioideae, family Fabaceae) is a perennial evergreen sacred medicinal tree classified under ‘vulnerable’ by the IUCN. The chloroplast (cp) genome/plastome which follows uniparental inheritance contains many useful genetic information because of its conservative rate of evolution. The assembled cp genome of
S. asoca
which maps as a conserved circular structure revealed extensive rearrangement in gene organization, comprising total length 160,003 bp including LSC, SSC, IRa, and IRb, and GC content was 35.26%. Herein a set of
rbc
L and
mat
K gene were established using molecular phylogenetic analyses for molecular typing of
S. asoca
.
ABSTRACT. Tea leaves are rich in plant secondary phenolics, especially flavonoids. Catechins are considered to be the most valuable flavonoids, and the catechin content in tea is an important trait for determining its quality. We have developed cleaved amplified polymorphic sequence (CAPS)-based markers for evaluating total catechin content that target two important secondary metabolite pathway genes, PAL (phenylalanine ammonia-lyase) and CHS (chalcone synthase). Catechin content levels in the tea samples tested ranged from 9 to 33 mg/mg. The CAPS technique identified clones with the homozygous profile PRc1, which has relatively lower catechin content than clones with the heterozygous profile PRc2. A significant difference (t = 16.85) in the level of catechin content was also detected between heterozygotes and homozygotes in the tea seed stock TS379. We found a polynomial relationship between the marker developed for CHS2 and catechin content in these tea samples with R 2 = 0.9788. Moreover, PAL has less of a relationship with catechin content. Therefore, we recommend tea clones with heterozygous CAPS profiles for the gene CHS2+RcaI for the further improvement in these clones.
The complete chloroplast genome sequences of vulnerable medicinal plant Saraca asoca (Roxb.) Willd. (Fabaceae) was sequenced. A total of 5,206,216,851 paired-end filtered reads of 151 bp were obtained. The plastome length (including LSC, SSC, IRa, and IRb) was 137,743 bp (GC content: 35.26%). A total of 126 coding genes which includes 97 CDS, 24 tRNA, and five rRNA genes were annotated. The phylogenetic analysis attempts to establish molecular signature in order to differentiate genuine sample of S. asoca from its adulterants easily.
The systematic relationships of Krameriaceae have changed considerably. The phylotranscriptomic data sets provide highly informative data for resolving deeper‐level phylogenetic relationships. The phylotranscriptomic analyses to infer evolutionary relationships of Krameriaceae in the order Zygophyllales using the Minimum Evolution, Maximum Parsimony and Maximum Likelihood methods recovered similar topology and taxon proximity. Under the Zygophyllales clade, Krameria lanceolata Torr. of the family Krameriaceae nested with Tribulus eichlerianus K.L. Wilson and Larrea tridentata (Sessé & Moc. ex DC.) Coville belonging to the family Zygophyllaceae with strong nodal support. The phylotranscriptomic analyses suggest that the family Krameriaceae is sister to Zygophyllaceae.
Bangladesh J. Plant Taxon. 27(2): 427-433, 2020 (December)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.