The TGF beta family member growth differentiation factor-9 (GDF-9) is an oocyte-derived factor that is essential for mammalian ovarian folliculogenesis. GDF-9 mRNAs have been shown to be expressed in the human ovarian follicle from the primary follicle stage onward, and recombinant GDF-9 has been shown to promote human ovarian follicle growth in vitro. In this study with primary cultures of human granulosa-luteal (hGL) cells, we investigated whether recombinant GDF-9 activates components of the Smad signaling pathways known to be differentially activated by TGF beta and the bone morphogenetic proteins (BMPs). As with TGF beta, GDF-9 treatment caused the phosphorylation of endogenous 53-kDa proteins detected in Western blots with antiphospho-Smad2 antibodies (alpha PS2). However, unlike BMP-2, GDF-9 did not activate the phosphorylation of antiphospho-Smad1 antibody (alphaPS1)-immunoreactive proteins in hGL cells. Infection of hGL cells with an adenovirus expressing Smad2 (Ad-Smad2) confirmed that GDF-9 activates specifically phosphorylation of the Smad2 protein. Infection of hGL cells with Ad-Smad7, which expresses the inhibitory Smad7 protein, suppressed the levels of both GDF-9-induced endogenous and adenoviral alpha PS2-reactive proteins. Furthermore, GDF-9 increased the steady state levels of inhibin beta(B)-subunit mRNAs in hGL cells and strongly stimulated the secretion of dimeric inhibin B. Again, Ad-Smad7 blocked GDF-9-stimulated inhibin B production in a concentration-dependent manner. We identify here for the first time distinct molecular components of the GDF-9 signaling pathway in the human ovary. Our data suggest that GDF-9 mediates its effect through the pathway commonly activated by TGF beta and activin, but not that activated by many BMPs. The results are also consistent with the suggestion that in addition to endocrine control of inhibin production by gonadotropins, a local paracrine control of inhibin production is likely to occur via oocyte-derived factors in the human ovary.
We screened expressed sequence tag databases for genes with up-regulated expression in inflammatory bowel diseases. A gene encoding a regenerating protein (REG)-like protein called RELP was identified and characterized. The relp gene encodes a major transcript of 1518 nucleotides, and two truncated splice variants. Unlike the reg genes, which form a cluster in chromosome 2, relp maps to chromosome 1p12-13.1. The predicted translation product is a 158-amino acid preprotein, showing 43% to 47% similarity to the REG proteins. It contains a 22-amino acid signal peptide, and a conserved calcium-dependent carbohydrate-recognition domain. Complementary DNA for the orthologous mouse gene was also cloned. The RELP protein is constitutively expressed in epithelial neuroendocrine cells of the small intestine and in parietal cells of the gastric mucosa. An up-regulated expression of RELP was seen in epithelial cells of inflammatory mucosa in ulcerative colitis and Crohn's disease, in regenerating epithelial borders of gastric ulcers, and in metaplastic epithelium in the antrum and the esophagus. Our findings suggest that RELP might be involved in inflammatory and metaplastic responses of the gastrointestinal epithelium.
We have produced human recombinant glycodelin in human kidney 293 cells and in Chinese hamster ovary (CHO) cells. Structural analyses by lectin immunoassays and fast atom bombardment mass spectrometry showed that recombinant human glycodelin produced in CHO cells contains only typical CHO-type glycans and is devoid of any of the N,N H -diacetyllactosediamine (lacdiNAc)-based chains previously identified in glycodelin-A (GdA). By contrast, human kidney 293 cells produced recombinant glycodelin with the same type of carbohydrate structures as GdA. The presence of a b134-N-acetylgalactosaminyltransferase functioning in the synthesis of lacdiNAc-based glycans in human kidney 293 cells is concluded to be the cause of the occurrence of lacdiNAc-based glycans on glycodelin produced in these cells. Furthermore, human kidney 293 cells were found to be particularly suited for the production of recombinant glycodelin when they were cultured in high glucose media. Lowering the glucose concentration and the addition of glucosamine resulted in higher relative amounts of oligomannosidic-type glycans and complex glycans with truncated antennae. Human glycodelin is an attractive candidate for the development of a contraceptive agent, and this study gives valuable information for selecting the proper expression system and cell culture conditions for the production of a correctly glycosylated recombinant form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.