The virus SARS-CoV2, which causes coronavirus disease (COVID-19) has become a pandemic and has spread to every inhabited continent. Given the increasing caseload, there is an urgent need to augment clinical skills in order to identify from among the many mild cases the few that will progress to critical illness. We present a first step towards building an artificial intelligence (AI) framework, with predictive analytics (PA) capabilities applied to real patient data, to provide rapid clinical decision-making support. COVID-19 has presented a pressing need as a) clinicians are still developing clinical acumen to this novel disease and b) resource limitations in a surging pandemic require difficult resource allocation decisions. The objectives of this research are: (1) to algorithmically identify the combinations of clinical characteristics of COVID-19 that predict outcomes, and (2) to develop a tool with AI capabilities that will predict patients at risk for more severe illness on initial presentation. The predictive models learn from historical data to help predict who will develop acute respiratory distress syndrome (ARDS), a severe outcome in COVID-19. Our results, based on data from two hospitals in Wenzhou, Zhejiang, China, identified features on initial presentation with COVID-19 that were most predictive of later development of ARDS. A mildly elevated alanine aminotransferase (ALT) (a liver enzyme), the presence of myalgias (body aches), and an elevated hemoglobin (red blood cells), in this order, are the clinical features, on presentation, that are the most predictive. The predictive models that learned from historical data of patients from these two hospitals achieved 70% to 80% accuracy in predicting severe cases.
The emergence and rapid global spread of the severe acute respiratory syndrome (SARS) coronavirus in 2002-2003 prompted efforts by modelers to characterize SARS epidemiology and inform control policies. We overview and discuss models for emerging infectious diseases (EIDs), provide a critical survey of SARS modeling literature, and discuss promising future directions for research. We reconcile discrepancies between published estimates of the basic reproductive number R0 for SARS (a crucial epidemiologic parameter), discuss insights regarding SARS control measures that have emerged uniquely from a modeling approach, and argue that high priorities for future modeling of SARS and similar respiratory EIDs should include informing quarantine policy and better understanding the impact of population heterogeneity on transmission patterns.
Migration primarily influences HIV spread by increasing high-risk sexual behaviour, rather than by connecting areas of low and high risk. Frequent return of migrants is an important risk factor when coupled with increased sexual risk behaviour. Accordingly, intervention programmes in South Africa need to target the sexual behaviour of short-term migrants specifically, even though these individuals may be more difficult to identify.
Rural-urban migration does not appear to be responsible for maintaining the high HIV prevalence in rural Zimbabwe, but rates of HIV infection may be affected by rural-rural migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.