Recently developed KRAS G12C inhibitory drugs are beneficial to lung cancer patients harboring KRAS G12C mutations, but drug resistance frequently develops. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, these drugs can indirectly affect antitumor immunity, providing a rationale for their combination with immune checkpoint blockade. In this study, we have characterized how KRAS G12C inhibition reverses immunosuppression driven by oncogenic KRAS in a number of preclinical lung cancer models with varying levels of immunogenicity. Mechanistically, KRAS G12C inhibition up-regulates interferon signaling via Myc inhibition, leading to reduced tumor infiltration by immunosuppressive cells, enhanced infiltration and activation of cytotoxic T cells, and increased antigen presentation. However, the combination of KRAS G12C inhibitors with immune checkpoint blockade only provides synergistic benefit in the most immunogenic tumor model. KRAS G12C inhibition fails to sensitize cold tumors to immunotherapy, with implications for the design of clinical trials combining KRAS G12C inhibitors with anti-PD1 drugs.
Mouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy. Here we present a workflow for studying the TME using imaging mass cytometry with a panel of 27 antibodies on frozen mouse tissues. We optimise and validate image segmentation strategies and automate the process in a Nextflow-based pipeline (imcyto) that is scalable and portable, allowing for parallelised segmentation of large multi-image datasets. With these methods we interrogate the remodelling of the TME induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung cancer model, highlighting the infiltration and activation of antigen presenting cells and effector cells.
Mouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), novel highly multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy. Here we present a workflow for studying the TME using imaging mass cytometry with a panel of 27 antibodies on frozen mouse tissues. We optimised and validated image segmentation strategies and automated the process in a Nextflow-based pipeline (imcyto) that is scalable and portable, allowing for parallelised segmentation of large multi-image datasets. Incorporating user-specific plugins, imcyto can be flexibly tailored to a wide range of segmentation needs. With these methods we interrogated the dramatic remodelling of the TME induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung cancer model, showcasing their potential as key discovery tools to enhance understanding of the interplay between tumour, stroma, and immune cells in the spatial context of the tissue.
Mouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), novel highly multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy. Here we present a workflow for studying the TME using imaging mass cytometry with a panel of 27 antibodies on frozen mouse tissues. We optimised and validated image segmentation strategies and automated the process in a Nextflow-based pipeline (imcyto) that is scalable and portable, allowing for parallelised segmentation of large multi-image datasets. Incorporating user-specific plugins, imcyto can be flexibly tailored to a wide range of segmentation needs. With these methods we interrogated the dramatic remodelling of the TME induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung cancer model, showcasing their potential as key discovery tools to enhance understanding of the interplay between tumour, stroma, and immune cells in the spatial context of the tissue.
The recent development and approval of KRASG12C inhibitors promises to change profoundly the clinical management of lung cancer patients harbouring KRASG12C mutations. However, early clinical data indicate that acquired drug resistance can frequently develop after the initial response. Due to the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, targeted KRASG12C inhibition can indirectly affect anti-tumour immunity. This has served as a rationale for combination with immune checkpoint blockade, showing therapeutic benefit in certain immunogenic pre-clinical tumour models. In this study, we characterised how KRASG12C inhibition reverses immune suppression driven by oncogenic KRAS in a number of pre-clinical lung cancer models with varying levels of immunogenicity. Mechanistically, KRASG12C inhibition upregulates interferon pathway gene expression via inhibition of Myc and, in tumours, leads to reduced infiltration of immunosuppressive cells, increased interferon responses and antigen presentation, and also enhanced infiltration and activation of cytotoxic T cells. However, the combination of KRASG12C inhibitors with immune checkpoint blockade only provides synergistic benefit in the most immunogenic tumour model, with KRASG12C inhibition failing to sensitize cold tumours to immunotherapy. In immunogenic tumours, complete responses to KRASG12C inhibition requires tumour cell autonomous interferon gamma signaling. Our data have important implications for the design of clinical trials combining KRASG12C inhibitors with anti-PD-1 drugs and suggest that additional combination strategies will be needed for immunotherapy refractory patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.