ObjectiveTo examine relationships between prenatal perfluoroalkyl substance (PFAS) exposure and adiposity in children born to women who lived downstream from a fluoropolymer manufacturing plant.MethodsData are from a prospective cohort in Cincinnati, OH (HOME Study). We measured perfluorooctanoic (PFOA), perfluorooctane sulfonic (PFOS), perfluorononanoic (PFNA), and perfluorohexane sulfonic (PFHxS) acids in prenatal serum samples. We estimated differences in body mass index z-scores (BMI), waist circumference, and body fat at 8 years of age (n=204) and BMI between 2–8 years of age (n=285) according to PFAS concentrations.ResultsChildren born to women in the top two PFOA terciles had greater adiposity at 8 years than children in the 1st tercile. For example, waist circumference (cm) was higher among children in the 2nd (4.3; 95% CI:1.7, 6.9) and 3rd tercile (2.2; 95% CI:−0.5, 4.9) compared to children in the 1st tercile. Children in the top two PFOA terciles also had greater BMI gains from 2–8 years compared to children in the 1st tercile (p<0.05). PFOS, PFNA and PFHxS were not associated with adiposity.ConclusionsIn this cohort, higher prenatal serum PFOA concentrations were associated with greater adiposity at 8 years and a more rapid increase in BMI between 2–8 years.
Typically, in the milder form of primary hyperparathyroidism (PHPT), seen in most countries now, bone density by DXA and detailed analyses of iliac crest bone biopsies by histomorphometry and µCT show detrimental effects in cortical bone, whereas the trabecular site (lumbar spine by DXA) and the trabecular compartment (by bone biopsy) appear to be relatively well preserved. Despite these findings, fracture risk at both vertebral and non-vertebral sites is increased in PHPT. Emerging technologies, such as high-resolution peripheral quantitative computed tomography (HRpQCT), may provide additional insight into microstructural features at sites such as the forearm and tibia that have heretofore not been easily accessible. Using HRpQCT, we determined cortical and trabecular microstructure at the radius and tibia in 51 postmenopausal women with PHPT and 120 controls. Individual trabecula segmentation (ITS) and micro finite element (µFE) analyses of the HRpQCT images were also performed to further understand how the abnormalities seen by HRpQCT might translate into effects on bone strength. Women with PHPT showed, at both sites, decreased volumetric densities at trabecular and cortical compartments, thinner cortices, and more widely spaced and heterogeneously distributed trabeculae. At the radius, trabeculae were thinner and fewer in PHPT. The radius was affected to a greater extent in the trabecular compartment than the tibia. ITS analyses revealed, at both sites, that plate-like trabeculae were depleted, with a resultant reduction in the plate/rod ratio. Microarchitectural abnormalities were evident by decreased plate-rod and plate-plate junctions at the radius and tibia, and rod-rod junctions at the radius. These trabecular and cortical abnormalities resulted in decreased whole bone stiffness and trabecular stiffness. These results provide evidence that in PHPT, microstructural abnormalities are pervasive and not limited to the cortical compartment. They may help to account for increased global fracture risk in PHPT.
Bisphenol A (BPA), an endocrine disruptor used in consumer products, may perturb thyroid function. Prenatal BPA exposure may have sex-specific effects on thyroid hormones (THs). Our objectives were to investigate whether maternal urinary BPA concentrations during pregnancy were associated with THs in maternal or cord serum, and whether these associations differed by newborn sex or maternal iodine status. We measured urinary BPA concentrations at 16 and 26 weeks gestation among pregnant women in the HOME Study (2003–2006, Cincinnati, Ohio). Thyroid stimulating hormone (TSH) and free and total thyroxine (T4) and triiodothyronine (T3) were measured in maternal serum at 16 weeks (n=181) and cord serum at delivery (n=249). Associations between BPA concentrations and maternal or cord serum TH levels were estimated by multivariable linear regression. Mean maternal urinary BPA was not associated with cord THs in all newborns, but a 10-fold increase in mean BPA was associated with lower cord TSH in girls (percent change= −36.0%; 95% confidence interval (CI): −58.4, −1.7%), but not boys (7.8%; 95% CI: −28.5, 62.7%; p-for-effect modification=0.09). We observed no significant associations between 16-week BPA and THs in maternal or cord serum, but 26-week maternal BPA was inversely associated with TSH in girls (−42.9%; 95% CI: −59.9, −18.5%), but not boys (7.6%; 95% CI: −17.3, 40.2%; p-for-effect modification=0.005) at birth. The inverse BPA-TSH relation among girls was stronger, but less precise, among iodine deficient versus sufficient mothers. Prenatal BPA exposure may reduce TSH among newborn girls, particularly when exposure occurs later in gestation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.