Per- and polyfluoroalkyl substances (PFAS), a highly persistent and potentially toxic class of chemicals, are added to cosmetics to increase their durability and water resistance. To assess this potential health and environmental risk, 231 cosmetic products purchased in the U.S. and Canada were screened for total fluorine using particle-induced gamma-ray emission spectroscopy. Of the eight categories tested, foundations, mascaras, and lip products had the highest proportion of products with high total fluorine ≥0.384 μg F/cm2. Twenty-nine products including 20 with high total fluorine concentrations were analyzed using targeted LC-MS/MS and GC-MS. PFAS concentrations ranged from 22–10,500 ng/g product weight, with an average and a median of 264 and 1050 ng/g product weights, respectively. Here, 6:2 and 8:2 fluorotelomer compounds, including alcohols, methacrylates, and phosphate esters, were most commonly detected. These compounds are precursors to PFCAs that are known to be harmful. The ingredient lists of most products tested did not disclose the presence of fluorinated compounds exposing a gap in U.S. and Canadian labeling laws. The manufacture, use, and disposal of cosmetics containing PFAS are all potential opportunities for health and ecosystem harm. Given their direct exposure routes into people, better regulation is needed to limit the widespread use of PFAS in cosmetics.
Recent studies suggest that the most common and lethal type of “ovarian” cancer, high-grade serous carcinoma (HGSC), usually arises from epithelium on the fallopian tube fimbriae, and not from the ovarian surface epithelium (OSE). We have developed Ovgp1-iCreERT2 mice in which the Ovgp1 promoter controls expression of tamoxifen (TAM)-regulated Cre recombinase in oviductal epithelium – the murine equivalent of human fallopian tube epithelium (FTE). We employed Ovgp1-iCreERT2 mice to show that FTE-specific inactivation of several different combinations of tumour suppressor genes recurrently mutated in human HGSCs – namely Brca1, Trp53, Rb1, and Nf1 – results in serous tubal intraepithelial carcinomas (STICs) that progress to HGSC or carcinosarcoma, and to widely metastatic disease in a subset of mice. The cancer phenotype is highly penetrant and more rapid in mice carrying engineered alleles of all four tumour suppressor genes. Brca1, Trp53 and Pten inactivation in the oviduct also results in STICs and HGSCs, and is associated with diffuse epithelial hyperplasia and mucinous metaplasia not observed in mice with intact Pten. Oviductal tumours arise earlier in these mice, compared to those with Brca1, Trp53, Rb1 and Nf1 inactivation. Tumour initiation and/or progression in mice lacking conditional Pten alleles likely requires acquisition of additional defects, a notion supported by our identification of loss of the wild-type Rb1 allele in the tumours of mice carrying only one floxed Rb1 allele. Collectively, the models closely recapitulate the heterogeneity and histological, genetic, and biological features of human HGSC. These models should prove useful for studying the pathobiology and genetics of HGSC in vivo, and for testing new approaches for prevention, early detection, and treatment.
We analyzed 72 children’s textile products marketed as stain-resistant from US and Canadian stores, particularly school uniforms, to assess if clothing represents a significant route of exposure to per- and polyfluoroalkyl substances (PFAS). Products were first screened for total fluorine (total F) using particle-induced γ-ray emission (PIGE) spectroscopy ( n = 72), followed by targeted analysis of 49 neutral and ionic PFAS ( n = 57). PFAS were detected in all products from both markets, with the most abundant compound being 6:2 fluorotelomer alcohol (6:2 FTOH). Total targeted PFAS concentrations for all products collected from both countries ranged from 0.250 to 153 000 ng/g with a median of 117 ng/g (0.0281–38 100 μg/m 2 , median: 24.0 μg/m 2 ). Total targeted PFAS levels in school uniforms were significantly higher than in other items such as bibs, hats, stroller covers, and swimsuits, but comparable to outdoor wear. Higher total targeted PFAS concentrations were found in school uniforms made of 100% cotton than synthetic blends. Perfluoroalkyl acids (PFAAs) precursors were abundant in school uniforms based on the results of hydrolysis and total oxidizable precursor assay. The estimated median potential children’s exposure to PFAS via dermal exposure through school uniforms was 1.03 ng/kg bw/day. Substance flow analysis estimated that ∼3 tonnes/year (ranging from 0.05 to 33 tonnes/year) of PFAS are used in US children’s uniforms, mostly of polymeric PFAS but with ∼0.1 tonne/year of mobile, nonpolymeric PFAS.
Adenomatous polyposis coli (APC) inactivating mutations are present in most human colorectal cancers and some other cancers. The APC protein regulates the β-catenin protein pool that functions as a co-activator of T cell factor (TCF)-regulated transcription in Wnt pathway signaling. We studied effects of reduced dosage of the Ctnnb1 gene encoding β-catenin in Apc-mutation-induced colon and ovarian mouse tumorigenesis and cell culture models. Concurrent somatic inactivation of one Ctnnb1 allele, dramatically inhibited Apc mutation-induced colon polyposis and greatly extended Apc-mutant mouse survival. Ctnnb1 hemizygous dose markedly inhibited increases in β-catenin levels in the cytoplasm and nucleus following Apc inactivation in colon epithelium, with attenuated expression of key β-catenin/TCF-regulated target genes, including those encoding the EphB2/B3 receptors, the stem cell marker Lgr5, and Myc, leading to maintenance of crypt compartmentalization and restriction of stem and proliferating cells to the crypt base. A critical threshold for β-catenin levels in TCF-regulated transcription was uncovered for Apc mutation-induced effects in colon epithelium, along with evidence of a feed-forward role for β-catenin in Ctnnb1 gene expression and CTNNB1 transcription. The active β-catenin protein pool was highly sensitive to CTNNB1 transcript levels in colon cancer cells. In mouse ovarian endometrioid adenocarcinomas (OEAs) arising from Apc- and Pten-inactivation, while Ctnnb1 hemizygous dose affected β-catenin levels and some β-catenin/TCF target genes, Myc induction was retained and OEAs arose in a fashion akin to that seen with intact Ctnnb1 gene dose. Our findings indicate Ctnnb1 gene dose exerts tissue-specific differences in Apc mutation-instigated tumorigenesis. Differential expression of selected β-catenin/TCF-regulated genes, such as Myc, likely underlies context-dependent effects of Ctnnb1 gene dosage in tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.