The therapeutic activity of arbidol was investigated against representatives of seven different virus families. Its 50% median effective concentration (EC(50) ) was 0.22-11.8 µg/ml (0.41-22 nM). Therapeutic indices of 91 were obtained for type 1 poliovirus and 1.9-8.5 for influenza A and B, human paramyxo-3, avian infectious bronchitis-, and Marek's disease viruses. Arbidol was more inhibitory for influenza A/Aichi/2/68 (H3N2) virus than rimantadine or amantadine (EC(50) 10 vs. >15 and >31.6 µg/ml); greater inhibition occurred when end-points were expressed as TCID(50) s. For respiratory syncytial virus (RSV), a reduction in plaque size but not number was observed. However, when the drug was added to infected cultures (≥5 µg/ml), a 3-log reduction in titer occurred. Arbidol did not inhibit directly influenza A/Aichi/2/68 hemagglutinin (HA) or neuraminidase (NA) activity, but inhibition of fusion between the viral envelope and chicken red blood cells occurred when added at 0.1 µg/ml prior to infection. Arbidol induced changes to viral mRNA synthesis of the PB2, PA, NP, NA, and NS genes in MDCK cultures infected with influenza A/PR/8/34. There was no indirect evidence of enhancement of interferon-α by arbidol following infection with A/Aichi/2/68. Arbidol neither reduced lung viral titers nor caused a significant reduction of lung consolidation in BALB/c mice after administration by the oral and intraperitoneal (i.p.) routes and intranasal challenge with influenza A/Aichi/2/68. A small reduction in lung consolidation, but not viral titer, occurred after i.p. administration and subsequent challenge with RSV. The results indicate the potential of arbidol as a broad-spectrum respiratory antiviral drug.
The large reservoir of human latent tuberculosis (TB) contributes to the global success of the pathogen, Mycobacterium tuberculosis (Mtb). We sought to test whether aerosol infection of rabbits with Mtb H37Rv could model paucibacillary human latent TB. The lung burden of infection peaked at 5 weeks after aerosol infection followed by host containment of infection that was achieved in all rabbits. One-third of rabbits had at least one caseous granuloma with culturable bacilli at 36 weeks after infection suggesting persistent paucibacillary infection. Corticosteroid-induced immunosuppression initiated after disease containment resulted in reactivation of disease. Seventy-two percent of rabbits had culturable bacilli in the right upper lung lobe homogenates compared to none of the untreated controls. Discontinuation of dexamethasone led to predictable lymphoid recovery, with a proportion of rabbits developing multicentric large caseous granuloma. The development and severity of the immune reconstitution inflammatory syndrome (IRIS) was dependent on the antigen load at the time of immunosuppression and subsequent bacillary replication during corticosteroid-induced © 2007 Elsevier Ltd. All rights reserved. *Correspondence and requests for reprints should be addressed to: Yukari C. Manabe, MD Johns Hopkins University School of Medicine 1147B Rutland Street, Rm 1147B Baltimore, MD 21205 Phone: (410)614-6600 Fax: (410)614-9775 ymanabe@jhmi.edu. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. HHS Public Access
The following is an overview of recent papers on the further development of neuraminidase inhibitors against influenza viruses and on recent development of newer antivirals against RSV and rhinoviruses. Where possible, comparisons are made with existing antivirals. For considerations of space, this review has been structured around stages in the replication cycle of significant respiratory viruses that have been traditionally used as targets for inhibition.
As previously published, after aerosol infection with Mycobacterium tuberculosis H37Rv, New Zealand white rabbits established infection with active bacillary replication, but later contained disease to a paucibacillary state through an effective adaptive response consistent with latency. Despite the heterogeneity among outbred rabbits, the resistant response was uniform. Immunosuppression resulted in reactivation with increased lung bacillary burden. Using this rabbit model, we isolated bacillary RNA from infected rabbit lungs and assessed transcriptional profiles of bacillary genes using RT-PCR to examine genes differentially regulated during active replication, persistence, steroid-induced reactivation, and post-steroid immune reconstitution. Genes involved in hypoxia response (fdxA), resuscitation promoting factors (rpfB), and DNA repair pathways (Rv2191) may be important in bacillary persistence. Further investigation into these gene pathways is warranted.
Most viral vaccines were developed as a consequence of our ability to cultivate viruses in embryonated eggs (from the 1930s) or cell cultures (the 1950s and 1960s). Clinical trials on vaccines are classified as phase I, II, III, or IV, depending on the stage of clinical development of a vaccine. This article focuses on the clinical trials and future trends in the development of different kinds of vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.