Killer whale (Orcinus orca) depredation (whales stealing or damaging fish caught on fishing gear) adversely impacts demersal longline fisheries for sablefish (Anoplopoma fimbria), Pacific halibut (Hippoglossus stenolepis) and Greenland turbot (Reinhardtius hippoglossoides) in the Bering Sea, Aleutian Islands and Western Gulf of Alaska. These interactions increase direct costs and opportunity costs associated with catching fish and reduce the profitability of longline fishing in western Alaska. This study synthesizes National Marine Fisheries Service observer data, National Marine Fisheries Service sablefish longline survey and fishermen-collected depredation data to: 1) estimate the frequency of killer whale depredation on longline fisheries in Alaska; 2) estimate depredation-related catch per unit effort reductions; and 3) assess direct costs and opportunity costs incurred by longliners in western Alaska as a result of killer whale interactions. The percentage of commercial fishery sets affected by killer whales was highest in the Bering Sea fisheries for: sablefish (21.4%), Greenland turbot (9.9%), and Pacific halibut (6.9%). Average catch per unit effort reductions on depredated sets ranged from 35.1–69.3% for the observed longline fleet in all three management areas from 1998–2012 (p<0.001). To compensate for depredation, fishermen set additional gear to catch the same amount of fish, and this increased fuel costs by an additional 82% per depredated set (average $433 additional fuel per depredated set). In a separate analysis with six longline vessels in 2011and 2012, killer whale depredation avoidance measures resulted in an average additional cost of $494 per depredated vessel-day for fuel and crew food. Opportunity costs of time lost by fishermen averaged $522 per additional vessel-day on the grounds. This assessment of killer whale depredation costs represents the most extensive economic evaluation of this issue in Alaska to date and will help longline fishermen and managers consider the costs and benefits of depredation avoidance and alternative policy solutions.
Background: Plasmodium apicoplast protein synthesis is essential, but few apicoplast tRNA synthetases have been characterized. Results: Apicoplast glutamyl-tRNA synthetase aminoacylates tRNA Glu and tRNA Gln , is sensitive to a bacterial inhibitor, and is essential in blood stages.
Conclusion: Formation of apicoplast Gln-tRNAGln is via indirect aminoacylation. Significance: We demonstrate that the apicoplast glutamyl-tRNA synthetase is a potential drug target.
Peterson, M. J., Mueter, F., Hanselman, D., Lunsford, C., Matkin, C., and Fearnbach, H. 2013. Killer whale (Orcinus orca) depredation effects on catch rates of six groundfish species: implications for commercial longline fisheries in Alaska. – ICES Journal of Marine Science, 70: 1220–1232. Killer whale (Orcinus orca) depredation occurs when whales damage or remove fish caught on longline gear. This study uses National Marine Fisheries Service longline survey data from 1998–2011 to explore spatial and temporal trends in killer whale depredation and to quantify the effect of killer whale depredation on catches of six groundfish species within three management areas in Alaska: the Bering Sea, Aleutian Islands and Western Gulf of Alaska. When killer whales were present during survey gear retrieval, whales removed an estimated 54–72% of sablefish (Anoplopoma fimbria), 41–84% of arrowtooth flounder (Atheresthes stomias) and 73% (Bering Sea only) of Greenland turbot (Reinhardtius hippoglossoides). Effects on Pacific halibut (Hippoglossus stenolepis) and Pacific cod (Gadus macrocephalus) were significant in the Western Gulf only with 51% and 46% reductions, respectively. Overall catches (depredated and non-depredated sets) for all groundfish species significantly impacted by killer whale depredation were lower by 9–28% (p < 0.05). Effects on shortspine thornyhead (Sebastolobus alascanus) catches were not significant in any management area (p > 0.05). These results provide insight into the potential impacts of killer whale depredation on fish stock abundance indices and commercially important fisheries in Alaska and will inform future research on apex predator–fisheries interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.