Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the embryonic development of hypothalamic neuroendocrine cells. Indeed, using Fgf8 hypomorphic mice, we showed that reduced Fgf8 mRNA expression completely eliminated the presence of gonadotropin-releasing hormone (GnRH) neurons. These findings suggest that FGF8 signaling is required during the embryonic development of mouse GnRH neurons. Additionally, in situ hybridization studies showed that the embryonic primordial birth place of GnRH neurons, the olfactory placode, is highly enriched for Fgf8 mRNA expression. Taken together these data underscore the importance of FGF8 signaling for GnRH emergence. However, an important question remains unanswered: How is Fgf8 gene expression regulated in the developing embryonic mouse brain? One major candidate is the androgen receptor (AR), which has been shown to upregulate Fgf8 mRNA in 60–70% of newly diagnosed prostate cancers. Therefore, we hypothesized that ARs may be involved in the regulation of Fgf8 transcription in the developing mouse brain. To test this hypothesis, we used chromatin-immunoprecipitation (ChIP) assays to elucidate whether ARs interact with the 5′UTR region upstream of the translational start site of the Fgf8 gene in immortalized mouse GnRH neurons (GT1-7) and nasal explants. Our data showed that while AR interacts with the Fgf8 promoter region, this interaction was androgen-independent, and that androgen treatment did not affect Fgf8 mRNA levels, indicating that androgen signaling does not induce Fgf8 transcription. In contrast, inhibition of DNA methyltransferases (DNMT) significantly upregulated Fgf8 mRNA levels indicating that Fgf8 transcriptional activity may be dependent on DNA methylation status.
Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the ontogenesis of gonadotropin-releasing hormone (GnRH) neurons, which control the hypothalamus-pituitary-gonadal (HPG) axis, and therefore reproductive success. Indeed, FGF8 and FGFR1 deficiency severely compromises vertebrate reproduction in mice and humans and is associated with Kallmann Syndrome (KS), a congenital disease characterized by hypogonadotropic hypogonadism associated with anosmia. Our laboratory demonstrated that FGF8 signaling through FGFR1, both of which are KS-related genes, is necessary for proper GnRH neuron development in mice and humans. Here, we investigated the possibility that non-genetic factors, such as the epigenome, may contribute to KS onset. For this purpose, we developed an embryonic explant model, utilizing the mouse olfactory placode (OP), the birthplace of GnRH neurons. We show that TET1, which converts 5-methylcytosine residues (5mC) to 5-hydroxymethylated cytosines (5hmC), controls transcription of Fgf8 during GnRH neuron ontogenesis. Through MeDIP and ChIP RT-qPCR we found that TET1 bound to specific CpG islands on the Fgf8 promoter. We found that the temporal expression of Fgf8 correlates with not only TET1 binding, but also with 5hmC enrichment. siRNA knockdown of Tet1 reduced Fgf8 and Fgfr1 mRNA expression. During this time period, Fgf8 also switched histone status, most likely via recruitment of EZH2, a major component of the polycomb repressor complex-2 (PRC2) at E13.5. Together, these studies underscore the significance of epigenetics and chromatin modifications to temporally regulated genes involved in KS.
Clinical studies demonstrated that the ovarian hormone 17β-estradiol (E2) is neuroprotective within a narrow window of time following menopause, suggesting that there is a biological switch in E2 action that is temporally dependent. However, the molecular mechanisms mediating this temporal switch have not been determined. Our previous studies focused on microRNAs (miRNA) as one potential molecular mediator and showed that E2 differentially regulated a subset of mature miRNAs which was dependent on age and the length of time following E2 deprivation. Notably, E2 significantly increased both strands of the miR-9 duplex (miR-9-5p and miR-9-3p) in the hypothalamus, raising the possibility that E2 could regulate miRNA stability/degradation. We tested this hypothesis using a biochemical approach to measure miRNA decay in a hypothalamic neuronal cell line and in hypothalamic brain tissue from a rat model of surgical menopause. Notably, we found that E2 treatment stabilized both miRNAs in neuronal cells and in the rat hypothalamus. We also used polysome profiling as a proxy for miR-9-5p and miR-9-3p function and found that E2 was able to shift polysome loading of the miRNAs, which repressed the translation of a predicted miR-9-3p target. Moreover, miR-9-5p and miR-9-3p transcripts appeared to occupy different fractions of the polysome profile, indicating differential subcellular. localization. Together, these studies reveal a novel role for E2 in modulating mature miRNA behavior, independent of its effects at regulating the primary and/or precursor form of miRNAs.
Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus–pituitary–gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.