Endocrine disrupting chemicals (EDCs) are widespread environmental contaminants that affect many neuroendocrine functions. The brain is particularly vulnerable to EDCs during critical periods of gestational development when gonadal hormones exert organizational effects on sexually dimorphic behaviors later in life. Peripubertal development is also a time of continued neural sensitivity to organizing effects of hormones, yet little is known about EDC actions at these times. We sought to determine effects of prenatal or juvenile exposures to a class of EDCs, polychlorinated biphenyls (PCBs) at human-relevant dosages on development, physiology, and social and anxiety-related behaviors later in life, and the consequences of a second juvenile “hit” following prenatal treatment. We exposed male and female Sprague-Dawley rats to PCBs (Aroclor 1221, 1mg/kg/day, ip injection) and/or vehicle during prenatal development (embryonic days 16, 18, 20), juvenile development (postnatal days 24, 26, 28), or both. These exposures had differential effects on behaviors in sex and age-dependent ways; while prenatal exposure had more effects than juvenile, juvenile exposure often modified or unmasked the effects of the first hit. Additionally, females exhibited altered social and anxiety behavior in adolescence, while males displayed small but significant changes in sociosexual preferences in adulthood. Thus, the brain continues to be sensitive to organizing effects of EDCs through juvenile development. As humans are exposed to EDCs throughout multiple periods in their life, these findings have implications for our understanding of EDC effects on physiology and behavior.
The arginine vasopressin 1b receptor (Avpr1b) is involved in the modulation of a variety of behaviors and is an important part of the mammalian hormonal stress axis. The Avpr1b is prominent in hippocampal CA2 pyramidal cells and in the anterior pituitary corticotrophs. Decades of research on this receptor has demonstrated its importance to the modulation of social recognition memory, social forms of aggression, and modulation of the hypothalamic-pituitary-adrenal axis, particularly under conditions of acute stress. Further, work in humans suggests that the Avpr1b may play a role in human neuropsychiatric disorders and its modulation may have therapeutic potential. This paper reviews what is known about the role of the Avpr1b in the context of social behaviors, the stress axis, and human neuropsychiatric disorders. Further, possible mechanisms for how Avpr1b activation within the hippocampus vs. Avpr1b activation within anterior pituitary may interact with one another to affect behavioral output are proposed.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus–pituitary–gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.