This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
The well described Wnt inhibitor Dickkopf-1 (DKK1) plays a role in angiogenesis as well as regulation of growth factor signaling cascades in pulmonary remodeling associated with chronic lung diseases including emphysema and fibrosis. However, the specific mechanisms by which DKK1 influences mesenchymal vascular progenitor (MVPC), endothelial and smooth muscle cells within the microvascular niche have not been elucidated. In this study, we show that knock down of DKK1 in Abcg2pos lung mouse adult tissue resident MVPC alters lung stiffness, parenchymal collagen deposition, microvessel muscularization and density as well as loss of tissue structure in response to hypoxia exposure. To complement the in vivo mouse modeling, we also identified cell or disease specific responses to DKK1, in primary lung COPD MVPC, COPD MVEC and SMC, supporting a paradoxical disease specific response of cells to well-characterized factors. Cell responses to DKK1 were dose dependent and correlated with varying expression of the DKK1 receptor, CKAP4. These data demonstrate that DKK1 expression is necessary to maintain the microvascular niche while its effects are context specific. They also highlight DKK1 as a regulatory candidate to understand the role of Wnt and DKK1 signaling between cells of the microvascular niche during tissue homeostasis and during the development of chronic lung diseases.
Pulmonary hypertension may arise as a complication of chronic lung disease typically associated with tissue hypoxia, as well as infectious agents or injury eliciting a type 2 immune response. The onset of pulmonary hypertension in this setting (classified as Group 3) often complicates treatment and worsens prognosis of chronic lung disease. Chronic lung diseases such as chronic obstructive lung disease (COPD), emphysema, and interstitial lung fibrosis impair airflow and alter lung elastance in addition to affecting pulmonary vascular hemodynamics that may culminate in right ventricle dysfunction. To date, functional endpoints in murine models of chronic lung disease have typically been limited to separately measuring airway and lung parenchyma physiology. These approaches may be lengthy and require a large number of animals per experiment. Here, we provide a detailed protocol for combined assessment of airway physiology with cardiovascular hemodynamics in mice. Ultimately, a comprehensive overview of pulmonary function in murine models of injury and disease will facilitate the integration of studies of the airway and vascular biology necessary to understand underlying pathophysiology of Group 3 pulmonary hypertension.
Tuberous sclerosis complex 2 (TSC2), or tuberin, is a pivotal regulator of the mechanistic target of rapamycin signaling pathway that controls cell survival, proliferation, growth, and migration. Loss of Tsc2 function manifests in organ-specific consequences, the mechanisms of which remain incompletely understood. Recent single cell analysis of the kidney has identified ATP-binding cassette G2 (Abcg2) expression in renal proximal tubules of adult mice as well as a in a novel cell population. The impact in adult kidney of Tsc2 knockdown in the Abcg2-expressing lineage has not been evaluated. We engineered an inducible system in which expression of truncated Tsc2, lacking exons 36–37 with an intact 3′ region and polycystin 1, is driven by Abcg2. Here, we demonstrate that selective expression of Tsc2fl36–37 in the Abcg2pos lineage drives recombination in proximal tubule epithelial and rare perivascular mesenchymal cells, which results in progressive proximal tubule injury, impaired kidney function, formation of cystic lesions, and fibrosis in adult mice. These data illustrate the critical importance of Tsc2 function in the Abcg2-expressing proximal tubule epithelium and mesenchyme during the development of cystic lesions and remodeling of kidney parenchyma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.