High temperatures can negatively impact the performance and survival of organisms, particularly ectotherms. While an organism's response to high temperature stress clearly depends on current thermal conditions, its response may also be affected by the temporal pattern and duration of past temperature exposures. We used RNA sequencing of Manduca sexta larvae fat body tissue to evaluate how diurnal temperature fluctuations during development affected gene expression both independently and in conjunction with subsequent heat stress. Additionally, we compared gene expression between two M. sexta populations, a lab colony and a genetically related field population that have been separated for >300 generations and differ in their thermal sensitivities. Lab-adapted larvae were predicted to show increased expression responses to both single and repeated thermal stress, whereas recurrent exposure could decrease later stress responses for field individuals. We found large differences in overall gene expression patterns between the two populations across all treatments, as well as population-specific transcriptomic responses to temperature; more differentially expressed genes were upregulated in the field compared with lab larvae. Developmental temperature fluctuations alone had minimal effects on long-term gene expression patterns, with the exception of a somewhat elevated stress response in the lab population. Fluctuating rearing conditions did alter gene expression during exposure to later heat stress, but this effect depended on both the population and the particular temperature conditions. This study contributes to increased knowledge of molecular mechanisms underlying physiological responses of organisms to temperature fluctuations, which is needed for the development of more accurate thermal performance models.
A substantial portion of seafood is mislabeled, causing significant impacts to human health, the environment, the economy, and society. Despite the large scientific literature documenting seafood mislabeling the public’s awareness of seafood mislabeling is unknown. We conducted an online survey to assess the public’s awareness and perceptions of seafood mislabeling. Of the 1,216 respondents, 38% had never heard of seafood mislabeling and 49% were only ‘vaguely familiar’ with it. After being provided the definition of seafood mislabeling 95% had some degree of concern. Respondents were the most concerned about environmental impacts caused by seafood mislabeling and the least concerned about the social justice implications. Respondents who were also more concerned and familiar with seafood mislabeling stated that they would be more likely to purchase seafood from a vendor where the labeling was independently verified.
Laboratory assays show that parasites often have lower heat tolerance than their hosts. But how physiological tolerances and behavioral responses of hosts and parasites combine to affect their ecological interactions in heterogeneous field environments is largely unknown. We addressed this challenge using the model insect system of the braconid wasp parasitoid, Cotesia congregata, and its caterpillar host, Manduca sexta. We used experimental manipulations of microclimate in the field to determine how elevated daytime temperatures altered the behavior, performance, and survival of host and parasite. Our experimental manipulation increased daily maximum temperatures on host plants, but had negligible effects on overall mean temperature. These increased maximum temperatures resulted in subtle, biologically relevant, changes in physiology and behavior of the host and parasitoid. We found that parasitism by the wasp did not significantly alter caterpillar thermoregulatory behavior, while experimentally increased daily maximum temperatures resulted in both parasitized and unparasitized caterpillars to be found more frequently in cooler microhabitats. Overall, we did not observe the complete parasitoid mortality seen at extreme temperatures in laboratory studies, but gained insight into the sublethal effects of increased daily maximum temperatures on host and parasitoid behavior and physiology. Climate change will alter both the biotic and abiotic environments that organisms face, and we show here that empirical experiments in the field are important for understanding organismal response to these new environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.