How strong is phenotypic selection on quantitative traits in the wild? We reviewed the literature from 1984 through 1997 for studies that estimated the strength of linear and quadratic selection in terms of standardized selection gradients or differentials on natural variation in quantitative traits for field populations. We tabulated 63 published studies of 62 species that reported over 2,500 estimates of linear or quadratic selection. More than 80% of the estimates were for morphological traits; there is very little data for behavioral or physiological traits. Most published selection studies were unreplicated and had sample sizes below 135 individuals, resulting in low statistical power to detect selection of the magnitude typically reported for natural populations. The absolute values of linear selection gradients |beta| were exponentially distributed with an overall median of 0.16, suggesting that strong directional selection was uncommon. The values of |beta| for selection on morphological and on life-history/phenological traits were significantly different: on average, selection on morphology was stronger than selection on phenology/life history. Similarly, the values of |beta| for selection via aspects of survival, fecundity, and mating success were significantly different: on average, selection on mating success was stronger than on survival. Comparisons of estimated linear selection gradients and differentials suggest that indirect components of phenotypic selection were usually modest relative to direct components. The absolute values of quadratic selection gradients |gamma| were exponentially distributed with an overall median of only 0.10, suggesting that quadratic selection is typically quite weak. The distribution of gamma values was symmetric about 0, providing no evidence that stabilizing selection is stronger or more common than disruptive selection in nature.
Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits.
Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses to climate. For example, the life stages of Manduca experience different patterns of thermal and hydric variability, and differ in tolerance to high temperatures. Second, life stages may differ in their mechanisms for adaptation to local climatic conditions. For example, in Colias, larvae in different geographic populations and species adapt to local climate via differences in optimal and maximal temperatures for feeding and growth, whereas adults adapt via differences in melanin of the wings and in other morphological traits. Third, we extend a recent analysis of the temperature-dependence of insect population growth to demonstrate how changes in temperature can differently impact juvenile survival and adult reproduction. In both temperate and tropical regions, high rates of adult reproduction in a given environment may not be realized if occasional, high temperatures prevent survival to maturity. This suggests that considering the differing responses of multiple life stages is essential to understand the ecological and evolutionary consequences of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.