The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.biodiversity ͉ fitness ͉ global warming ͉ physiology ͉ tropical G lobal warming in this century may be the largest anthropogenic disturbance ever placed on natural systems (1, 2). Its impact on species is likely to vary geographically (2-4), but a mechanistic framework to predict its magnitude and global distribution has not yet been developed (5). One important determinant of biological responses to climate change will be the degree of warming itself, which will continue to be greater at high latitudes (6). Also relevant, however, is the physiological sensitivity of organisms to changes in the temperature of their environment (7,8). The thermal tolerance of many organisms has been shown to be proportional to the magnitude of temperature variation they experience (9-11), a characteristic of climate that also increases with latitude. Evaluating the impacts of rapidly changing climates on population fitness and survival thus requires linking geographic patterns of the magnitude of temperature change with the physiological sensitivity of organisms to that change (12).Ectotherms constitute the vast majority of terrestrial biodiversity (13) and are especially likely to be vulnerable to climate warming because their basic physiological functions such as locomotion, growth, and reproduction are strongly influenced by environmental temperature. The ability of ectotherms to perform such functions at different temperatures is described by a thermal performance curve (14), which rises gradually with temperature from a minimum critical temperature, CT min , to an optimum temperature, T opt , and then drops rapidly to a critical thermal maxi...
A recently developed integrative framework proposes that the vulnerability of a species to environmental change depends on the species' exposure and sensitivity to environmental change, its resilience to perturbations and its potential to adapt to change. These vulnerability criteria require behavioural, physiological and genetic data. With this information in hand, biologists can predict organisms most at risk from environmental change. Biologists and managers can then target organisms and habitats most at risk. Unfortunately, the required data (e.g. optimal physiological temperatures) are rarely available. Here, we evaluate the reliability of potential proxies (e.g. critical temperatures) that are often available for some groups. Several proxies for ectotherms are promising, but analogous ones for endotherms are lacking. We also develop a simple graphical model of how behavioural thermoregulation, acclimation and adaptation may interact to influence vulnerability over time. After considering this model together with the proxies available for physiological sensitivity to climate change, we conclude that ectotherms sharing vulnerability traits seem concentrated in lowland tropical forests. Their vulnerability may be exacerbated by negative biotic interactions. Whether tropical forest (or other) species can adapt to warming environments is unclear, as genetic and selective data are scant. Nevertheless, the prospects for tropical forest ectotherms appear grim.
We describe a research protocol for evaluating temperature regulation from data on small field-active ectothermic animals, especially lizards. The protocol requires data on body temperatures (Tb) of field-active ectotherms, on available operative temperatures (Te, "null temperatures" for nonregulating animals), and on the thermoregulatory set-point range (preferred body temperatures, Tset). These data are used to estimate several quantitative indexes that collectively summarize temperature regulation: the "precision" of body temperature (variance in Tb, or an equivalent metric), the "accuracy" of body temperature relative to the set-point range (the average difference between Tb and Tset), and the "effectiveness" of thermoregulation (the extent to which body temperatures are closer on the average to the set-point range than are operative temperatures). If additional data on the thermal dependence of performance are available, the impact of thermoregulation on performance (the extent to which performance is enhanced relative to that of nonregulating animals) can also be estimated. A sample analysis of the thermal biology of three Anolis lizards in Puerto Rico demonstrates the utility of the new protocol and its superiority to previous methods of evaluating temperature regulation. We also discuss several ways in which the research protocol can be extended and applied to other organisms.
Physiological thermal-tolerance limits of terrestrial ectotherms often exceed local air temperatures, implying a high degree of thermal safety (an excess of warm or cold thermal tolerance). However, air temperatures can be very different from the equilibrium body temperature of an individual ectotherm. Here, we compile thermal-tolerance limits of ectotherms across a wide range of latitudes and elevations and compare these thermal limits both to air and to operative body temperatures (theoretically equilibrated body temperatures) of small ectothermic animals during the warmest and coldest times of the year. We show that extreme operative body temperatures in exposed habitats match or exceed the physiological thermal limits of most ectotherms. Therefore, contrary to previous findings using air temperatures, most ectotherms do not have a physiological thermal-safety margin. They must therefore rely on behavior to avoid overheating during the warmest times, especially in the lowland tropics. Likewise, species living at temperate latitudes and in alpine habitats must retreat to avoid lethal cold exposure. Behavioral plasticity of habitat use and the energetic consequences of thermal retreats are therefore critical aspects of species' vulnerability to climate warming and extreme events. macrophysiology | operative temperature | climate sensitivity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.