We describe a research protocol for evaluating temperature regulation from data on small field-active ectothermic animals, especially lizards. The protocol requires data on body temperatures (Tb) of field-active ectotherms, on available operative temperatures (Te, "null temperatures" for nonregulating animals), and on the thermoregulatory set-point range (preferred body temperatures, Tset). These data are used to estimate several quantitative indexes that collectively summarize temperature regulation: the "precision" of body temperature (variance in Tb, or an equivalent metric), the "accuracy" of body temperature relative to the set-point range (the average difference between Tb and Tset), and the "effectiveness" of thermoregulation (the extent to which body temperatures are closer on the average to the set-point range than are operative temperatures). If additional data on the thermal dependence of performance are available, the impact of thermoregulation on performance (the extent to which performance is enhanced relative to that of nonregulating animals) can also be estimated. A sample analysis of the thermal biology of three Anolis lizards in Puerto Rico demonstrates the utility of the new protocol and its superiority to previous methods of evaluating temperature regulation. We also discuss several ways in which the research protocol can be extended and applied to other organisms.
synopsis. An understanding of interactions between the thermal physiology and ecology of ectotherms remains elusive, partly because information on the relative performance of whole-animal physiological systems at ecologically relevant body temperatures is limited. After discussing physiological systems that have direct links to ecology (e.g., growth, locomotor ability), we review analytical methods of describing and comparing certain as? pects of performance (including optimal temperature range, thermal performance breadth), apply these techniques in an example on the thermal sensitivity of locomotion in frogs, and evaluate potential applications.
Biologists have developed a wide range of morphological, biochemical and physiological metrics to assess the health and, in particular, the energetic status of individual animals. These metrics originated to quantify aspects of human health, but have also proven useful to address questions in life history, ecology and resource management of game and commercial animals. We review the application of condition indices (CI) for conservation studies and focus on measures that quantify fat reserves, known to be critical for energetically challenging activities such as migration, reproduction and survival during periods of scarcity. Standard methods score fat content, or rely on a ratio of body mass rationalized by some measure of size, usually a linear dimension such as wing length or total body length. Higher numerical values of these indices are interpreted to mean an animal has greater energy reserves. Such CIs can provide predictive information about habitat quality and reproductive output, which in turn can help managers with conservation assessments and policies. We review the issues about the methods and metrics of measurement and describe the linkage of CIs to measures of body shape. Debates in the literature about the best statistical methods to use in computing and comparing CIs remain unresolved. Next, we comment on the diversity of methods used to measure body composition and the diversity of physiological models that compute body composition and CIs. The underlying physiological regulatory systems that govern the allocation of energy and nutrients among compartments and processes within the body are poorly understood, especially for field situations, and await basic data from additional laboratory studies and advanced measurement systems including telemetry. For now, standard physiological CIs can provide supporting evidence and mechanistic linkages for population studies that have traditionally been the focus of conservation biology. Physiologists can provide guidance for the field application of conditions indices with validation studies and development of new instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.