Synapse formation is a fundamental process in neurons that occurs throughout development, maturity, and aging. Although these stages contain disparate and fluctuating numbers of mature neurons, tactics employed by neuronal networks to modulate synapse number as a function of neuronal density are not well understood. The goal of this study was to utilize an in vitro model to assess the influence of cell density and neuronal maturity on synapse number and distribution. Specifically, cerebral cortical neurons were plated in planar culture at densities ranging from 10 – 5000 neurons/mm2, and synapse number and distribution were evaluated via immunocytochemistry over 21 days in vitro (DIV). High-resolution confocal microscopy revealed an elaborate three-dimensional distribution of neurites and synapses across the heights of high-density neuronal networks by 21 DIV, which were up to 18 μm thick, demonstrating the complex degree of spatial interactions even in planar high-density cultures. At 7 DIV, the mean number of synapses per neuron was less than five, and this did not vary as a function of neuronal density. However, by 21 DIV, the number of synapses per neuron had jumped 30- to 80-fold, and the synapse-to-neuron ratio was greatest at lower neuronal densities (<500 neurons/mm2; mean approximately 400 synapses/neuron) compared to mid and higher neuronal densities (500 – 4500 neurons/mm2; mean approximately 150 synapses/neuron) (p < 0.05). These results suggest a relationship between neuronal density and synapse number that may have implications in the neurobiology of developing neuronal networks as well as processes of cell death and regeneration.
Embryonic stem (ES) cells could potentially serve as an excellent cell source for various applications in regenerative medicine and tissue engineering. Our laboratory is particularly interested in generating a reproducible endothelial cell source for the development of prevascularized materials for tissue/organ reconstruction. After developing methods to isolate highly purified (>96%) proliferating populations of endothelial cells from mouse embryonic stem cells, we tested their ability to form three-dimensional (3-D) vascular structures in vitro. The ES cell-derived endothelial cells were embedded in 3-D collagen gel constructs with rat tail collagen type I (2 mg/mL) at a concentration of 10(6) cells/mL of gel. The gels were observed daily with a phase-contrast microscope to analyze the time course for endothelial cell assembly. The first vessels were observed between days 3 and 5 after gel construct formation. The number and complexity of structures steadily increased, reaching a maximum before beginning to regress. By 2 weeks, all vessel-like structures had regressed back to single cells. Histology and fluorescent images of the vessel-like structures verified that tube structures were multicellular and could develop patent lumens. We have shown that endothelial cells derived, purified and expanded in vitro from ES cells sustain an important endothelial cell function, the ability to undergo vasculogenesis in collagen gels, indicating that endothelial products derived in vitro from stem cells could be useful in regenerative medicine applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.