SUMMARY
Soluble Amyloid-β oligomers (Aβo) trigger Alzheimer’s disease (AD) pathophysiology and bind with high affinity to Cellular Prion Protein (PrPC). At the post-synaptic density (PSD), extracellular Aβo bound to lipid-anchored PrPC activates intracellular Fyn kinase to disrupt synapses. Here, we screened transmembrane PSD proteins heterologously for the ability to couple Aβo–PrPC with Fyn. Only co-expression of the metabotropic glutamate receptor, mGluR5, allowed PrPC-bound Aβo to activate Fyn. PrPC and mGluR5 interact physically, and cytoplasmic Fyn forms a complex with mGluR5. Aβo–PrPC generates mGluR5-mediated increases of intracellular calcium in Xenopus oocytes and in neurons, and the later is also driven by human AD brain extracts. In addition, signaling by Aβo–PrPC–mGluR5 complexes mediates eEF2 phosphorylation and dendritic spine loss. For mice expressing familial AD transgenes, mGluR5 antagonism reverses deficits in learning, memory and synapse density. Thus, Aβo–PrPC complexes at the neuronal surface activate mGluR5 to disrupt neuronal function.
During central nervous system development, extracellular matrix (ECM) receptors and their ligands play key roles as guidance molecules, informing neurons where and when to send axonal and dendritic projections, establish connections, and form synapses between pre- and postsynaptic cells. Once stable synapses are formed, many ECM receptors transition in function to control the maintenance of stable connections between neurons and regulate synaptic plasticity. These receptors bind to and are activated by ECM ligands. In turn, ECM receptor activation modulates downstream signaling cascades that control cytoskeletal dynamics and synaptic activity to regulate neuronal structure and function and thereby impact animal behavior. The activities of cell adhesion receptors that mediate interactions between pre- and post-synaptic partners are also strongly influenced by ECM composition. This chapter highlights a number of ECM receptors, their roles in the control of synapse structure and function, and the impact of these receptors on synaptic plasticity and animal behavior.
Most dendrite branches and a large fraction of dendritic spines in the adult rodent forebrain are stable for extended periods of time. Destabilization of these structures compromises brain function and is a major contributing factor to psychiatric and neurodegenerative diseases. Integrins are a class of transmembrane extracellular matrix receptors that function as αβ heterodimersand activate signaling cascades regulating the actin cytoskeleton. Here we identify integrin α3 as a key mediator of neuronal stability. Dendrites, dendritic spines, and synapses develop normally in mice with selective loss of integrin α3 in excitatory forebrain neurons, reaching their mature sizes and densities through post-natal day 21 (P21). However, by P42 integrin α3 mutant mice exhibit significant reductions in hippocampal dendrite arbor size and complexity, loss of dendritic spine and synapse densities, and impairments in hippocampus-dependent behavior. Furthermore, gene-dosage experiments demonstrate that integrin α3 interacts functionally with the Arg nonreceptor tyrosine kinase to activate p190RhoGAP (p190), which inhibits RhoA GTPase and regulates hippocampal dendrite and synapse stability and mouse behavior. Together our data support a fundamental role for integrin α3 in regulating dendrite arbor stability, synapse maintenance, and proper hippocampal function. In addition, these results provide a biochemical and structural explanation for the defects in LTP, learning, and memory previously reported in mice lacking integrin α3.
The Abl2/Arg nonreceptor tyrosine kinase is enriched in dendritic spines where it is essential for maintaining dendrite and synapse stability in the postnatal mouse brain. Arg is activated downstream of integrin α3β1 receptors and it regulates the neuronal actin cytoskeleton both by directly binding F-actin and via phosphorylation of substrates including p190RhoGAP and cortactin. Neurons in mice lacking Arg or integrin α3β1 develop normally through postnatal day 21 (P21), however by P42 mice exhibit major reductions in dendrite arbor size and complexity, and lose dendritic spines and synapses. As a result, mice with loss of Arg and Arg-dependent signaling pathways have impairments in memory tasks, heightened sensitivity to cocaine, and vulnerability to corticosteroid-induced neuronal remodeling. Therefore, understanding the molecular mechanisms of Arg regulation may lead to therapeutic approaches to treat human psychiatric and neurodegenerative diseases in which neuronal structure is destabilized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.