X-ray crystallography is the gold standard to resolve conformational ensembles that are significant for protein function, ligand discovery, and computational methods development. However, relevant conformational states may be missed at...
Part of early stage drug discovery involves determining how molecules may bind to the target protein. Through understanding where and how molecules bind, chemists can begin to build ideas on how to design improvements to increase binding affinities. In this retrospective study, we compare how computational approaches like docking, molecular dynamics (MD) simulations, and a non-equilibrium candidate Monte Carlo (NCMC) based method (NCMC+MD) perform in predicting binding modes for a set of 12 fragment-like molecules which bind to soluble epoxide hydrolase. We evaluate each method's effectiveness in identifying the dominant binding mode and finding any additional binding modes (if any). Then, we compare our predicted binding modes to experimentally obtained X-ray crystal structures. We dock each of the 12 small molecules into the apo-protein crystal structure and then run simulations up to 1 microsecond each. Small and fragment-like molecules likely have smaller energy barriers separating different binding modes by virtue of relatively fewer and weaker interactions relative to drug-like molecules, and thus likely undergo more rapid binding mode transitions. We expect, thus, to see more rapid transitions between binding modes in our study. Following this, we build Markov State Models (MSM) to define our stable ligand binding modes. We investigate if adequate sampling of ligand binding modes and transitions between them can occur at the microsecond timescale using traditional MD or a hybrid NCMC+MD simulation approach. Our findings suggest that even with small fragment-like molecules, we fail to sample all the crystallographic binding modes using microsecond MD simulations, but using NCMC+MD we have better success in sampling the crystal structure while obtaining the correct populations.
<div>Part of early stage drug discovery involves determining how molecules may bind to the target protein. Through understanding where and how molecules bind, chemists can begin to build ideas on how to design improvements to increase binding affinities. In this retrospective study, we compare how computational approaches like docking, molecular dynamics (MD) simulations, and a non-equilibrium candidate Monte Carlo (NCMC) based method (NCMC+MD) perform in predicting binding modes for a set of 12 fragment-like molecules which bind to soluble epoxide hydrolase. We evaluate each method's effectiveness in identifying the dominant binding mode and finding any additional binding modes (if any). Then, we compare our predicted binding modes to experimentally obtained X-ray crystal structures.</div><div>We dock each of the 12 small molecules into the apo-protein crystal structure and then run simulations up to 1 microsecond each. Small and fragment-like molecules likely have smaller energy barriers separating different binding modes by virtue of relatively fewer and weaker interactions relative to drug-like molecules, and thus likely undergo more rapid binding mode transitions. We expect, thus, to see more rapid transitions betweeen binding modes in our study. </div><div><br></div><div>Following this, we build Markov State Models (MSM) to define our stable ligand binding modes. We investigate if adequate sampling of ligand binding modes and transitions between them can occur at the microsecond timescale using traditional MD or a hybrid NCMC+MD simulation approach. Our findings suggest that even with small fragment-like molecules, we fail to sample all the crystallographic binding modes using microsecond MD simulations, but using NCMC+MD we have better success in sampling the crystal structure while obtaining the correct populations.</div>
Obtaining accurate binding free energies from in-silico screens has been a longstanding goal for the computational chemistry community. However, accuracy and computational cost are at odds with one another, limiting the utility of methods that perform this type of calculation. Many methods achieve massive scale by explicitly or implicitly assuming that the target protein adopts a single structure, or undergoes limited fluctuations around that structure, to minimize computational cost. Others simulate each protein-ligand complex of interest, accepting lower throughput in exchange for better predictions of binding affinities. Here, we present the PopShift framework for accounting for the ensemble of structures a protein adopts and their relative probabilities. Protein degrees of freedom are enumerated once, and then arbitrarily many molecules can be screened against this ensemble. Specifically, we use Markov state models (MSMs) as a compressed representation of a protein's thermodynamic ensemble. We start with a ligand-free MSM and then calculate how addition of a ligand shifts the populations of each protein conformational state based on the strength of the interaction between that protein conformation and the ligand. In this work we use docking to estimate the affinity between a given protein structure and ligand, but any estimator of binding affinities could be used in the PopShift framework. We test PopShift on the classic benchmark pocket T4 Lysozyme L99A. We find that PopShift is more accurate and requires less intervention than other strategies, such as docking to a single structure, traditional ensemble docking, and alchemical binding free energy calculations. In addition to predicting binding free energies and ligand poses, PopShift also provides insight into how the probability of different protein structures is shifted upon addition of different concentrations of ligand, providing a platform for predicting KDs and allosteric effects of ligand binding. Therefore, we expect PopShift will be valuable for hit finding and for providing insight into phenomena like allostery.
<div>Part of early stage drug discovery involves determining how molecules may bind to the target protein. Through understanding where and how molecules bind, chemists can begin to build ideas on how to design improvements to increase binding affinities. In this retrospective study, we compare how computational approaches like docking, molecular dynamics (MD) simulations, and a non-equilibrium candidate Monte Carlo (NCMC) based method (NCMC+MD) perform in predicting binding modes for a set of 12 fragment-like molecules which bind to soluble epoxide hydrolase. We evaluate each method's effectiveness in identifying the dominant binding mode and finding any additional binding modes (if any). Then, we compare our predicted binding modes to experimentally obtained X-ray crystal structures.</div><div>We dock each of the 12 small molecules into the apo-protein crystal structure and then run simulations up to 1 microsecond each. Small and fragment-like molecules likely have smaller energy barriers separating different binding modes by virtue of relatively fewer and weaker interactions relative to drug-like molecules, and thus likely undergo more rapid binding mode transitions. We expect, thus, to see more rapid transitions betweeen binding modes in our study. </div><div><br></div><div>Following this, we build Markov State Models (MSM) to define our stable ligand binding modes. We investigate if adequate sampling of ligand binding modes and transitions between them can occur at the microsecond timescale using traditional MD or a hybrid NCMC+MD simulation approach. Our findings suggest that even with small fragment-like molecules, we fail to sample all the crystallographic binding modes using microsecond MD simulations, but using NCMC+MD we have better success in sampling the crystal structure while obtaining the correct populations.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.