This paper presents the algorithms and system architecture of an autonomous racecar. The introduced vehicle is powered by a software stack designed for robustness, reliability, and extensibility. To autonomously race around a previously unknown track, the proposed solution combines state of the art techniques from different fields of robotics. Specifically, perception, estimation, and control are incorporated into one high‐performance autonomous racecar. This complex robotic system, developed by AMZ Driverless and ETH Zürich, finished first overall at each competition we attended: Formula Student Germany 2017, Formula Student Italy 2018 and Formula Student Germany 2018. We discuss the findings and learnings from these competitions and present an experimental evaluation of each module of our solution.
In autonomous racing, vehicles operate close to the limits of handling and a sensor failure can have critical consequences. To limit the impact of such failures, this paper presents the redundant perception and state estimation approaches developed for an autonomous race car. Redundancy in perception is achieved by estimating the color and position of the track delimiting objects using two sensor modalities independently. Specifically, learning-based approaches are used to generate color and pose estimates, from LiDAR and camera data respectively. The redundant perception inputs are fused by a particle filter based SLAM algorithm that operates in real-time. Velocity is estimated using slip dynamics, with reliability being ensured through a probabilistic failure detection algorithm. The sub-modules are extensively evaluated in realworld racing conditions using the autonomous race car gotthard driverless, achieving lateral accelerations up to 1.7G and a top speed of 90km/h. 1 www.youtube.com/watch?v=ir_uqEYuT84
Childhood obesity is a major public health challenge. Early prediction and identification of the children at an elevated risk of developing childhood obesity may help in engaging earlier and more effective interventions to prevent and manage obesity. Most existing predictive tools for childhood obesity primarily rely on traditional regression-type methods using only a few hand-picked features and without exploiting longitudinal patterns of children’s data. Deep learning methods allow the use of high-dimensional longitudinal datasets. In this article, we present a deep learning model designed for predicting future obesity patterns from generally available items on children’s medical history. To do this, we use a large unaugmented electronic health records dataset from a large pediatric health system in the United States. We adopt a general LSTM network architecture and train our proposed model using both static and dynamic EHR data. To add interpretability, we have additionally included an attention layer to calculate the attention scores for the timestamps and rank features of each timestamp. Our model is used to predict obesity for ages between 3 and 20 years using the data from 1 to 3 years in advance. We compare the performance of our LSTM model with a series of existing studies in the literature and show it outperforms their performance in most age ranges.
Working with electronic health records (EHRs) is known to be challenging due to several reasons. These reasons include not having: 1) similar lengths (per visit), 2) the same number of observations (per patient), and 3) complete entries in the available records. These issues hinder the performance of the predictive models created using EHRs. In this paper, we approach these issues by presenting a model for the combined task of imputing and predicting values for the irregularly observed and varying length EHR data with missing entries. Our proposed model (dubbed as Bi-GAN) uses a bidirectional recurrent network in a generative adversarial setting. In this architecture, the generator is a bidirectional recurrent network that receives the EHR data and imputes the existing missing values. The discriminator attempts to discriminate between the actual and the imputed values generated by the generator. Using the input data in its entirety, Bi-GAN learns how to impute missing elements in-between (imputation) or outside of the input time steps (prediction). Our method has three advantages to the state-of-the-art methods in the field: (a) one single model performs both the imputation and prediction tasks; (b) the model can perform predictions using time-series of varying length with missing data; (c) it does not require to know the observation and prediction time window during training and can be used for the predictions with different observation and prediction window lengths, for short-and long-term predictions. We evaluate our model on two large EHR datasets to impute and predict body mass index (BMI) values and show its superior performance in both settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.