Polarization sensitive second harmonic generation (pSHG) microscopy has been used previously to characterize the structure of collagen fibers in corneal samples. Due to the typical organization of the corneal stroma, the information that pSHG provides may be misleading in points where two different collagen fiber bundles orient along different direction crossings. Here, a simulation that illustrates the problem is presented, along with a novel method that is capable of identifying these crossing points. These results can be used to improve the evaluation of corneal collagen structure, and it has been applied to analyze pSHG data acquired from healthy and keratoconic human corneal samples.
Second harmonic generation (SHG) in biological tissue originates predominantly from noncentrosymmetric fibrillar structures partially oriented within the focal volume (voxel) of a multiphoton excitation microscope. The study is aimed to elucidate fibrillar organization factors influencing SHG intensity, as well as achiral, R, and chiral, C, nonlinear susceptibility tensor component ratios. SHG response is calculated for various configurations of fibrils in a voxel using digital nonlinear microscope. The R and C ratios are calculated using linear incident and outgoing polarization states that simulate polarization-in polarization-out (PIPO) polarimetric measurements. The investigation shows strong SHG intensity dependence on parallel/antiparallel fiber organization. The R and C ratio is strongly influenced by the fiber chirality, tilting of the fibers out of image plane and crossing of the fibers. The study facilitates interpretation of polarimetric SHG microscopy images in terms of ultrastructural organization of fibers in the imaged structures.
Principles of molecular self-assembly into giant hierarchical structures of hundreds of micrometers in size are studied in aggregates of meso-tetra(4-sulfonatophenyl)porphine (TPPS4). The aggregates form a central tubular core, which is covered with radially protruding filamentous non-branching aggregates. The filaments cluster and orient at varying angles from the core surface and some filaments form bundles. Due to shape resemblance, the structures are termed giant sea urchin (GSU) aggregates. Spectrally resolved fluorescence microscopy reveals J- and H-bands of TPPS4 aggregates in both the central core and the filaments. The fluorescence of the core is quenched while filaments exhibit strong fluorescence. Upon drying, the filament fluorescence gets quenched while the core is less affected, showing stronger relative fluorescence. Fluorescence-detected linear dichroism (FDLD) microscopy reveals that absorption dipoles corresponding to J-bands are oriented along the filament axis. The comparison of FDLD with scanning electron microscopy (SEM) reveals the structure of central core comprised of multilayer ribbons, which wind around the core axis forming a tube. Polarimetric second-harmonic generation (SHG) and third-harmonic generation microscopy exhibits strong signal from the filaments with nonlinear dipoles oriented close to the filament axis, while central core displays very low SHG due to close to centrosymmetric organization. Large chiral nonlinear susceptibility points to helical arrangement of the filaments. The investigation shows that TPPS4 molecules form distinct aggregate types, including chiral nanotubes and nanogranular aggregates that associate into the hierarchical GSU structure, prototypical to complex biological structures. The chiral TPPS4 aggregates can serve as harmonophores for nonlinear microscopy.
Polarization sensitive second harmonic generation (pSHG) microscopy is an imaging technique able to provide, in a non-invasive manner, information related to the molecular structure of second harmonic generation (SHG) active structures, many of which are commonly found in biological tissue. The process of acquiring this information by means of pSHG microscopy requires a scan of the sample using different polarizations of the excitation beam. This process can take considerable time in comparison with the dynamics of in vivo processes. Fortunately, single scan polarization sensitive second harmonic generation (SS-pSHG) microscopy has also been reported, and is able to generate the same information at a faster speed compared to pSHG. In this paper, the orientation of second harmonic active supramolecular assemblies in starch granules is obtained on by means of pSHG and SS-pSHG. These results are compared in the forward and backward directions, showing a good agreement in both techniques. This paper shows for the first time, to the best of the authors’ knowledge, data acquired using both techniques over the exact same sample and image plane, so that they can be compared pixel-to-pixel.
Second harmonic generation (SHG) microscopy is a commonly used technique to study the organization of collagen within tissues. However, individual collagen fibrils, which have diameters much smaller than the resolution of most optical systems, have not been extensively investigated. Here we probe the structure of individual collagen fibrils using polarization-resolved SHG (PSHG) microscopy and atomic force microscopy. We find that longitudinally polarized light occurring at the edge of a focal volume of a high numerical aperture microscope objective illuminated with linearly polarized light creates a measurable variation in PSHG signal along the axis orthogonal to an individual collagen fibril. By comparing numerical simulations to experimental data, we are able to estimate parameters related to the structure and chirality of the collagen fibril without tilting the sample out of the image plane, or cutting tissue at different angles, enabling chirality measurements on individual nanostructures to be performed in standard PSHG microscopes. The results presented here are expected to lead to a better understanding of PSHG results from both collagen fibrils and collagenous tissues. Further, the technique presented can be applied to other chiral nanoscale structures such as microtubules, nanowires, and nanoribbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.