Background:Insulin-like growth factor-binding protein 7 (IGFBP7) is an abundant, selective and accessible biomarker of glioblastoma multiforme (GBM) tumour vessels. In this study, an anti-IGFBP7 single-domain antibody (sdAb) was developed to target GBM vessels for molecular imaging applications.Methods:Human GBM was modelled in mice by intracranial implantation of U87MG.EGFRvIII cells. An anti-IGFBP7 sdAb, isolated from an immune llama library by panning, was assessed in vitro for its binding affinity using surface plasmon resonance and by ex vivo immunobinding on mouse and human GBM tissue. Tumour targeting by Cy5.5-labelled anti-IGFBP7 sdAb as well as by anti-IGFBP7 sdAb conjugated to PEGylated Fe3O4 nanoparticles (NPs)-Cy5.5 were assessed in U87MG.EGFRvIII tumour-bearing mice in vivo using optical imaging and in brain sections using fluorescent microscopy.Results:Surface plasmon resonance analyses revealed a medium affinity (KD=40–50 n) binding of the anti-IGFBP7 sdAb to the purified antigen. The anti-IGFBP7 sdAb also selectively bound to both mouse and human GBM vessels, but not normal brain vessels in tissue sections. In vivo, intravenously injected anti-IGFBP7 sdAb-Cy5.5 bound to GBM vessels creating high imaging signal in the intracranial tumour. Similarly, the anti-IGFBP7 sdAb-functionalised PEGylated Fe3O4 NP-Cy5.5 demonstrated enhanced tumour signal compared with non-targeted NPs. Fluorescent microscopy confirmed the presence of anti-IGFBP7 sdAb and anti-IGFBP7 sdAb-PEGylated Fe3O4 NPs selectively in GBM vessels.Conclusions:Anti-IGFBP7 sdAbs are novel GBM vessel-targeting moieties suitable for molecular imaging.
A novel cell surface display system for metal uptake was developed using CS3 pili of enterotoxigenic Escherichia coli, which is a suitable system for display of heterologous peptides. The recombinant bacteria producing the hybrid pili containing the hexahistidine peptide accumulated high concentrations of Cd(2+) and Ni(2+) at 656.2 and 276.5 nmol per mg dry weight of bacterial cell, respectively. The recombinant bacteria may be useful in water and waste water treatment.
According to World Health Organization (WHO), cancer is a leading cause of death worldwide, accounting for 7.4 million deaths (around 13% of all deaths) in 2004. Monoclonal/recombinant antibodies, which specifically target clinical biomarkers of disease, have increasingly been applied as powerful tools in cancer imaging and therapy, a fact that is highlighted by some nine FDA-approved monoclonal antibodies (MAbs) or their immunoconjugates (as of December 2008) for use in cancer treatment. In this study, five monoclonal antibodies (MAbs) were generated and characterized against carcinoembryonic antigen (CEA), which is widely used clinically as both a blood and tissue tumor marker of epithelial malignancy. Variable domains (VH and VL) of one the stable MAbs with highest affinity were PCR-amplified and assembled as single-chain antibody fragment (scFv). Following the cloning and expression of scFv antibody fragments in Escherichia coli, the functional binding and specificity of the recombinant antibody were confirmed by ELISA. To develop a direct in vitro detection of CEA-positive cancer cells, scFv DNA was genetically fused to enhanced green fluorescent protein (EGFP) gene and expressed in bacteria. The chimeric fluorescent protein is able to specifically detect CEA-positive cell lines; no cross-reactivity was observed with a negative control cell line. This strategy will likely allow the establishment of a rapid, single-step detection assay of CEA, which is considered to be one of the best predictors of malignancy among all other tumor markers.
Beet necrotic yellow vein virus (BNYVV) infects sugar beet plants worldwide and is responsible for the rhizomania disease and severe economic losses. Disease severity and lack of naturally occurring resistant plants make it very difficult to control the virus, both from epidemiological and economic standpoints. Therefore, early detection is vital to impose hygiene restrictions and prevent further spread of the virus in the field. Immunoassays are one of the most popular methodologies for the primary identification of plant pathogens including BNYVV since they are robust, sensitive, fast, and inexpensive. In this study, the major coat protein (CP21) of BNYVV was cloned and expressed in Escherichia coli. Thereafter, mice were immunized with purified CP21 and a phage antibody library was constructed from their PCR-amplified immunoglobulin repertoire. Following filamentous phage rescue of the library and four rounds of panning against recombinant CP21 antigen, several specific single chain Fv fragments were isolated and characterized. This approach may pave the way to develop novel immunoassays for a rapid detection of viral infection. Moreover, it will likely provide essential tools to establish antibody-mediated resistant transgenic technology in sugar beet plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.