As a remarkable parameter, the discharge coefficient (Cd) plays an important role in determining weirs' passing capacity. In this research work, the SVM and the GEP algorithms were assessed to predict Cd of piano key weir (PKW), rectangular labyrinth weir (RLW), and trapezoidal labyrinth weir (TLW) with gathered experimental data set. Using dimensional analysis, various combinations of hydraulic and geometric non-dimensional parameters were extracted to perform simulation. The superior model for the SVM and the GEP predictor for PKW, RLW, and TLW included , and respectively. The results showed that both algorithms are potential in predicting discharge coefficient, but the coefficient of determination (RMSE, R2, Cd(DDR)max) illustrated the superiority of the GEP performance over the SVM. The results of the sensitivity analysis determined the highest effective parameters for PKW, RLW, and TLW in predicting discharge coefficients are , , and Fr respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.