Objective:
Multiple Sclerosis (MS) is an autoimmune and demyelinating disease that leads to lesions in the central nervous system. This disease can be tracked and diagnosed using Magnetic Resonance Imaging (MRI). A multitude of multimodality automatic biomedical approaches are used to segment lesions that are not beneficial for patients in terms of cost, time, and usability. The authors of the present paper propose a method employing just one modality (FLAIR image) to segment MS lesions accurately.
Methods:
A patch-based Convolutional Neural Network (CNN) is designed, inspired by 3D-ResNet and spatial-channel attention module, to segment MS lesions. The proposed method consists of three stages: (1) the Contrast-Limited Adaptive Histogram Equalization (CLAHE) is applied to the original images and concatenated to the extracted edges to create 4D images; (2) the patches of size
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$80\times 80\times 80\times2$
\end{document}
are randomly selected from the 4D images; and (3) the extracted patches are passed into an attention-based CNN which is used to segment the lesions. Finally, the proposed method was compared to previous studies of the same dataset.
Results:
The current study evaluates the model with a test set of ISIB challenge data. Experimental results illustrate that the proposed approach significantly surpasses existing methods of Dice similarity and Absolute Volume Difference while the proposed method uses just one modality (FLAIR) to segment the lesions.
Conclusion:
The authors have introduced an automated approach to segment the lesions, which is based on, at most, two modalities as an input. The proposed architecture comprises convolution, deconvolution, and an SCA-VoxRes module as an attention module. The results show, that the proposed method outperforms well compared to other methods.
Deep neural networks (DNNs) have become a relevant subject in the classification of radio frequency signals and remote sensing data. A primary challenge is a tradeoff between obtaining data that are suitable for DNN training and the effort that making experimental measurements requires. Hence, the quality and quantity of data used for the training and testing of models are crucial for effective classifier development. The training dataset should cover a wide range of cases that synthesize the actual scenarios being classified. This work proposes a novel data augmentation method based on a deterministic model to generate a simulated dataset of radar micro-Doppler signatures suitable for unmanned aerial vehicle (UAV) target classification, without requiring measurement data. It is shown that the DNN trained using the properly generated model-based data offers improved classification accuracy performance. Resultsare presented for a two-class classification of the number of UAV motors using a 77-GHz frequency-modulated continuouswave (FMCW) automotive radar system. The effectiveness of the proposed methodology is proven: a classification accuracy of 78.68% is achieved using a convolutional neural network (CNN) trained using the synthetic dataset, while an accuracy of 66.18% is achieved by using a typical signal processing data augmentation method on a limited measured dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.