A photonic circuit design for implementing frequency 8-tupling and 24-tupling is proposed. The front- and back-end of the circuit comprises 4×4 MMI couplers enclosing an array of four pairs of phase modulators and 2×2 MMI couplers. The proposed design for frequency multiplication requires no optical or electrical filters, the operation is not limited to carefully adjusted modulation indexes, and the drift originated from static DC bias is mitigated by making use of the intrinsic phase relations of multi-mode interference couplers. A transfer matrix approach is used to represent the main building blocks of the design and hence to describe the operation of the frequency 8-tupling and 24-tupling. The concept is theoretically developed and demonstrated by simulations. Ideal and imperfect power imbalances in the multi-mode interference couplers, as well as ideal and imperfect phases of the electric drives to the phase modulators, are analyzed.
A novel electro-optical up-conversion mixer architecture comprising four electro-optical phase modulators situated in the arms between an interconnected 1 × 4 distribution tree and a complementary 4 × 2 combination tree is proposed. The distribution and combination trees are based on multi-mode interference couplers (MMI). The novelty lies in the use of the intrinsic phase relations between the MMI ports to realize a broadband and free of drift design requiring no static phase shift elements. A transfer-matrix approach is followed to represent the main building blocks in the proposed design, and hence to describe the operation of the entire optical up-conversion mixer. The concept is demonstrated by computer simulations. A single side-band modulation with carrier suppression is obtained at the output of the proposed architecture, which is in agreement with the analytical development. Scenarios considering both ideal and imperfect power balances and phase relations in the MMIs, as well as imperfect phase relations of the electrical drives to the phase modulators are analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.