Indian post-kala-azar dermal leishmaniasis (PKDL) is a low-frequency (5-10%) dermal sequela of visceral leishmaniasis (VL) caused by Leishmania donovani; importantly, affected individuals are speculated to be parasite reservoirs. Insight into its immunopathogenesis could translate into rational immunomodulatory therapeutic approaches against leishmaniases. In patients with PKDL (n=21), peripheral lymphocytes were analyzed for surface markers, intracellular cytokines, and lymphoproliferative responses using flow cytometry. In lesional tissue biopsies (n=12), expression of counter-regulatory cytokines (IFN-gamma and IL-10) and the T-regulatory transcription factor forkhead box protein 3 (Foxp3) was analyzed using reverse transcriptase-PCR, along with immunohistochemical detection (n=8) of CD3 and Foxp3 positivity. In patients with PKDL, circulating CD8(+)CD28(-) and antigen-induced IL-10(+)CD3(+) lymphocytes were increased and receded with treatment. CD8(+) lymphocytes showed impaired proliferative responses to L. donovani antigen (LDA) and phytohemagglutinin, which were reinstated after treatment. At presentation, the upregulated lesional IFN-gamma and IL-10 messenger RNA (mRNA), Foxp3 mRNA, and protein were curtailed after treatment. In Indian patients with PKDL, increased frequency of the CD8(+)CD28(-) phenotype, enhanced antigen-specific IL-10 production, and accompanying anergy of circulating lymphocytes suggest their regulatory nature. Furthermore, the concomitantly elevated lesional expression of Foxp3 suggests their possible recruitment into the lesional site, which would sustain disease pathology.
Leprosy type 1 reactions (T1R) are due to increased cell-mediated immunity and result in localized tissue damage. The anti-inflammatory drug prednisolone is used for treatment, but there is little good in vivo data on the molecular actions of prednisolone. We investigated the effect of prednisolone treatment on tumor necrosis factor alpha (TNF-␣), interleukin-1 (IL-1), IL-10, and transforming growth factor 1 (TGF-1) mRNA and protein expression in blood and skin biopsies from 30 patients with T1R in India. After 1 month of prednisolone treatment the sizes of the skin granulomas were reduced, as were the grades of cells positive for TNF-␣ and IL-10 in skin lesions. Increased production of TGF-1 was seen in skin lesions after 6 months of prednisolone treatment. Expression of mRNA for TNF-␣, IL-1, and TGF-1 was reduced, whereas no change in IL-10 mRNA expression was detected during treatment. The circulating cytokine profiles were similar in patients with and without T1R, and prednisolone treatment had no detectable effects on cytokine expression in the blood. The data emphasize the compartmentalization of pathology in T1R and the importance of the immune response in the skin. Clinical improvement and cytokine expression were compared. Surprisingly, patients with improved skin and nerve function and patients with nonimproved skin and nerve function had similar cytokine profiles, suggesting that clinical improvement is not directly mediated by the cytokines studied here. This in vivo well-controlled study of the immunosuppressive effects of prednisolone showed that the drug does not switch off cytokine responses effectively.
Lsr2 protein of Mycobacterium leprae was shown earlier to elicit B and T cell responses in leprosy patients (20, 28). Lymphoproliferation to M. leprae and Lsr2 antigens was observed in >70% of tuberculoid (T) patients and in 16 and 34% of lepromatous (L) patients, respectively. We focused on the M. leprae nonresponders in the lepromatous group using 22 synthetic Lsr2 peptides (end-to-end peptides A to F and overlapping peptides p1 to p16) in in vitro T cell responses. A total of 125 leprosy and 13 tuberculosis patients and 19 healthy controls from the area of endemicity (here, healthy controls, or HC) were investigated. The highest responses were observed (67 to 100%) in HC for all peptides except p1 to p3, and the lowest was observed in tuberculosis patients. Significant differences in lymphoproliferation were observed in T, L, and HC groups (analysis of variance [ANOVA], P ؍ 0.000 to 0.015) for all end-to-end peptides except B and for p5 and p7 to p10. Hierarchical recognition between lepromatous and tuberculoid leprosy was noted for p8 (P < 0.05) and between the HC and L groups for p7 to p10, p15, and p16 (P < 0.005 to P < 0.02). Significant lymphoproliferation was observed to peptides A to F and p1 to p9, p11, p12, p15, p16 (P ؍ 0.000 to 0.001) with 40% responding to peptides C and p16 in L patients. Lepromatous patients also showed significantly higher levels of a gamma interferon (IFN-␥) response to peptide C than to other peptides (P < 0.05). Major histocompatibility complex (MHC) class II bias for peptide recognition was not observed. These studies indicate that Lsr2 has multiple T cell epitopes that induce in vitro T cell responses in the highly infective lepromatous leprosy patients. Though the prevalence of leprosy has been reduced due to multidrug therapy regimens, the incidence continues to be a public health worry in some countries (40). Leprosy is caused by the noncultivable Mycobacterium leprae and is defined by distinct clinical-pathological types in humans (29), with the paucibacillary localized tuberculoid forms (borderline tuberculoid/tuberculoid [BT/TT]) having good in vitro and in vivo T cell functions and low levels of antibodies. In contrast, the multibacillary generalized lepromatous leprosy patients (borderline leprosy/lepromatous leprosy [BL/LL]) show abundant antibody responses and T cell unresponsiveness unique to the leprosy bacillus and not to other antigenically related mycobacteria such as Mycobacterium tuberculosis. Moreover, 10 to 15% of stable leprosy patients undergo inflammatory episodes of types 1 (reversal reactions [RR]) and 2 (erythema nodosum leprosum [ENL]) which are localized to the lesion or produce systemic signs of fever, joint pains, and skin nodules. The inverse relationship between cellular and humoral immunity as well as the dichotomy in the leprosy types has been intensely investigated (21,30). The mechanisms underlying the antigen-specific anergy are not completely understood as it is long-lasting and not reversed by conventional therapy. Attempts to impr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.