The macrophage resistance gene NRAMP1 regulates priming/activation of macrophages for enhanced TNFa, ILIl, and MHC class II expression. Since all of these functions are of potential importance in the induction or maintenance or both of autoimmune disease, samples from the Arthritis and Rheumatism Council's repository of multicase rheumatoid arthritis families were typed for a dinucleotide repeat in the NRAMP1 promoter region and four other 2q34 (TNP1) or 2q35 (IL8R, VILl, DES) marker genes.Identity by descent (IBD) sib pair analysis using a three locus haplotype NRAMP1-IL8RB-VIL1, or NRAMP1 alone, provided preliminary evidence (maximum lod score = 1.01, p = 0.024) for a gene in this region contributing to susceptibility to rheumatoid arthritis. Candidacy for NRAMP1 as the disease susceptibility gene was supported by a significant bias (p=0.048) towards transmission of the NRAMP1 promoter region allele 3 in affected offspring.
Leprosy type 1 reactions (T1R) are due to increased cell-mediated immunity and result in localized tissue damage. The anti-inflammatory drug prednisolone is used for treatment, but there is little good in vivo data on the molecular actions of prednisolone. We investigated the effect of prednisolone treatment on tumor necrosis factor alpha (TNF-␣), interleukin-1 (IL-1), IL-10, and transforming growth factor 1 (TGF-1) mRNA and protein expression in blood and skin biopsies from 30 patients with T1R in India. After 1 month of prednisolone treatment the sizes of the skin granulomas were reduced, as were the grades of cells positive for TNF-␣ and IL-10 in skin lesions. Increased production of TGF-1 was seen in skin lesions after 6 months of prednisolone treatment. Expression of mRNA for TNF-␣, IL-1, and TGF-1 was reduced, whereas no change in IL-10 mRNA expression was detected during treatment. The circulating cytokine profiles were similar in patients with and without T1R, and prednisolone treatment had no detectable effects on cytokine expression in the blood. The data emphasize the compartmentalization of pathology in T1R and the importance of the immune response in the skin. Clinical improvement and cytokine expression were compared. Surprisingly, patients with improved skin and nerve function and patients with nonimproved skin and nerve function had similar cytokine profiles, suggesting that clinical improvement is not directly mediated by the cytokines studied here. This in vivo well-controlled study of the immunosuppressive effects of prednisolone showed that the drug does not switch off cytokine responses effectively.
Gamma interferon (IFN-γ)-secreting CD4+ T cells have long been established as an essential component of the protective immune response against Mycobacterium tuberculosis. It is now becoming evident from studies with the murine model of tuberculosis that an important role also exists for major histocompatibility complex (MHC) class I-restricted CD8+ T cells. These cells are capable of acting as both IFN-γ secretors and cytotoxic T lymphocyte (CTL) effectors; however, their exact role in immunity against tuberculosis remains unclear. This study demonstrates the presence ofMycobacterium bovis BCG-reactive CD8+ T cells in healthy BCG-vaccinated donors and that these CD8+ T cells are potent cytokine producers as well as cytotoxic effector cells. Using FACScan analysis, we have shown that restimulation with live M. bovis BCG induced more CD8+-T-cell activation than the soluble antigen purified protein derivative and that these cells are actively producing the type 1 cytokines IFN-γ and tumor necrosis factor alpha (TNF-α). These CD8+ T cells also contain the cytolytic granule perforin and are capable of acting as potent CTLs against M. bovis BCG-infected macrophages. The mycobacterial antigens 85A and B (Ag85A and Ag85B, respectively), and to a lesser extent the 19- and 38-kDa proteins, are major antigenic targets for these mycobacterium-specific CD8+ T cells, while whole-M. bovis BCG activated effector cells from these BCG-vaccinated donors, as expected, failed to recognize the 6-kDa ESAT-6 protein. The use of metabolic inhibitors and blocking antibodies revealed that the CD8+ T cells recognize antigen processed and presented via the classical MHC class I pathway. These data suggest that CD8+ T cells may play a critical role in the human immune response to tuberculosis infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.