The antioxidant and mutagenic/antimutagenic activities of the fixed oils from Nigella sativa (NSO) and Nigella damascena (NDO) seeds, obtained by cold press‐extraction from the cultivar samples, were comparatively investigated for the first time. The antimutagenicity test was carried out using classical and modified Ames tests. The fatty acid composition of the fixed oils was characterized by gas chromatography–mass spectrometry (GC‐MS) while the quantification of thymoquinone in the fixed oils was determined by UPC2. The main components of the NSO and NDO were found to be linoleic acid, oleic acid, and palmitic acid. The results of the Ames test confirmed the safety of NSO and NDO from the viewpoint of mutagenicity. The results of the three antioxidant test methods were correlated with each other, indicating NDO as having a superior antioxidant activity, when compared to the NSO. Both NSO and NDO exhibited a significant protective effect against the mutagenicity induced by aflatoxin B1 in Salmonella typhimurium TA98 and TA100 strains. When microsomal metabolism was terminated after metabolic activation of the mycotoxin, a significant increase in antimutagenic activity was observed, suggesting that the degradation of aflatoxin B1 epoxides by these oils may be a possible antimutagenic mechanism. It is worthy to note that this is the first study to assess the mutagenicity of NSO and NDO according to the OECD 471 guideline and to investigate antimutagenicity of NDO in comparison to NSO against aflatoxin.
Introduction
Sweet cherry (Prunus avium L.), one of the most consumed fruits in the world, is rich in phenolic and especially anthocyanin content.
Objective
The aim of this study was to evaluate the phenolic properties of 11 different sweet cherry genotypes collected from Giresun, Turkey.
Methods
Total phenol, flavonoid, anthocyanin and antioxidant properties were observed spectrophotometrically in three different extraction (conventional, microwave‐assisted and ultrasound‐assisted) processes. Major phenolic, anthocyanin and antioxidant structures were visually assessed by high‐performance thin layer chromatography (HPTLC). Various phenolics in its structure were determined by liquid chromatography–tandem mass spectrometry (LC–MS/MS).
Results
T2 and E5 genotypes had the highest content in terms of total phenol, flavonoid, anthocyanin and antioxidant activity. In HPTLC, cherry samples contained high levels of chlorogenic acid, neochlorogenic acid, p‐coumaroylquinic acid, rutin and cyanidin‐3 rutinoside. Among the phenolics examined in the LC–MS/MS method, the major compounds in the structure of cherry were found to be chlorogenic acid, rutin and catechin. The T2 genotype had higher phenolics than the other cherry samples (chlorogenic acid 19.3 mg/100 g; catechin; 3.8 mg/100 g; rutin 33.1 mg/100 g).
Conclusion
As a result, T2 and E5 genotypes had higher phenolic and antioxidant activity compared to other genotypes and commercial cultivars. It can be said that the antioxidant contents of these genotypes are due to the high anthocyanin amount in their structures. In addition, T2 genotype contained more major phenolics than other cherries. In the next stage, it is recommended to carry out studies on the cultivation of these two varieties.
Essential oils have a high volatility that leads to evaporation and loss of their pharmacological effect when exposed to the environment. The objectives of the present work were to prepare microcapsules with oregano essential oil by extrusion using sodium alginate as a shell material and non-ionic surfactant polysorbate 80 as an emulsifier to stabilize the emulsion. The present study was aimed to evaluate the physical parameters of microcapsules and to compare the influence of the amount of emulsifier and the essential oil-to-emulsifier ratio on the capsules’ physical parameters and encapsulation efficiency; to our knowledge, the existing research had not yet revealed whether unstable emulsion affects the encapsulation efficiency of oregano essential oil. This study showed that increasing the emulsifier amount in the formulation significantly influenced encapsulation efficiency and particle size. Moreover, increasing the emulsion stability positively influenced the encapsulation efficiency. The emulsion creaming index depended on the emulsifier amount in the formulation: the highest creaming index (%) was obtained with the highest amount of polysorbate 80. However, the essential oil-to-polysorbate 80 ratio and essential oil amount did not affect the hardness of the microcapsules (p > 0.05). In conclusion, the obtained results could be promising information for production of microcapsules. Despite the fact that microencapsulation of essential oils is a promising and extremely attractive application area for the pharmaceutical industry, further basic research needs to be carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.