An M-ary communication system is considered in which the transmitter and the receiver are connected via multiple additive (possibly non-Gaussian) noise channels, any one of which can be utilized for the transmission of a given symbol. Contrary to deterministic signaling (i.e., employing a fixed constellation), a stochastic signaling approach is adopted by treating the signal values transmitted for each information symbol over each channel as random variables. In particular, the joint optimization of the channel switching (i.e., time sharing among different channels) strategy, stochastic signals, and decision rules at the receiver is performed in order to minimize the average probability of error under an average transmit power constraint. It is proved that the solution to this problem involves either one of the following: (i) deterministic signaling over a single channel, (ii) randomizing (time sharing) between two different signal constellations over a single channel, or (iii) switching (time sharing) between two channels with deterministic signaling over each channel. For all cases, the optimal strategies are shown to employ corresponding maximum a posteriori probability (MAP) decision rules at the receiver. In addition, sufficient conditions are derived in order to specify whether the proposed strategy can or cannot improve the error performance over the conventional approach, in which a single channel is employed with deterministic signaling at the average power limit. Finally, numerical examples are presented to illustrate the theoretical results. © 2013 Elsevier Inc
Abstract-Optimal detector randomization is studied for the downlink of a multiuser communications system, in which users can perform time-sharing among multiple detectors. A formulation is provided to obtain optimal signal amplitudes, detectors, and detector randomization factors. It is shown that the solution of this joint optimization problem can be calculated in two steps, resulting in significant reduction in computational complexity. It is proved that the optimal solution is achieved via randomization among at most min{K, N d } detector sets, where K is the number of users and N d is the number of detectors at each receiver. Lower and upper bounds are derived on the performance of optimal detector randomization, and it is proved that the optimal detector randomization approach can reduce the worst-case average probability of error of the optimal approach that employs a single detector for each user by up to K times. Various sufficient conditions are obtained for the improvability and nonimprovability via detector randomization. In the special case of equal crosscorrelations and noise powers, a simple solution is developed for the optimal detector randomization problem, and necessary and sufficient conditions are presented for the uniqueness of that solution. Numerical examples are provided to illustrate the improvements achieved via detector randomization.
Abstract-Optimal channel switching and detector design is studied for M -ary communication systems in the presence of stochastic signaling, which facilitates randomization of signal values transmitted for each information symbol. Considering the presence of multiple additive noise channels (which can have nonGaussian distributions in general) between a transmitter and a receiver, the joint optimization of the channel switching (timesharing) strategy, stochastic signals, and detectors is performed in order to achieve the minimum average probability of error. It is proved that the optimal solution to this problem corresponds to either (i) switching between at most two channels with deterministic signaling over each channel, or (ii) time-sharing between at most two different signals over a single channel (i.e., stochastic signaling over a single channel). For both cases, the optimal solutions are shown to employ corresponding maximum a posteriori probability (MAP) detectors at the receiver. Numerical results are presented to investigate the proposed approach.
Stochastic signal design is studied for the downlink of a multiuser communications system. First, a formulation is proposed for the joint design of optimal stochastic signals. Then, an approximate formulation, which can get arbitrarily close to the optimal solution, is obtained based on convex relaxation. In addition, when the receivers employ symmetric signaling and sign detectors, it is shown that the maximum asymptotical improvement ratio is equal to the number of users, and the conditions under which that maximum asymptotical improvement ratio is achieved are presented. Numerical examples are provided to explain the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.