To achieve security in wireless sensor networks, it is important to be able to encrypt and authenticate messages sent between sensor nodes. Before doing so, keys for performing encryption and authentication must be agreed upon by the communicating parties. Due to resource constraints, however, achieving key agreement in wireless sensor networks is non-trivial. Many key agreement schemes used in general networks, such as Diffie-Hellman and other public-key based schemes, are not suitable for wireless sensor networks due to the limited computational abilities of the sensor nodes. Pre-distribution of secret keys for all pairs of nodes is not viable due to the large amount of memory this requires when the network size is large. To solve the key pre-distribution problem, two elegant key pre-distribution approaches have been proposed recently.In this paper, we provide a framework in which to study the security of key pre-distribution schemes, propose a new key pre-distribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an in-depth analysis of our scheme in terms of network resilience and associated overhead. Our scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the probability that communications between any additional nodes are compromised is close to zero. This desirable property lowers the initial payoff of smaller-scale network breaches to an adversary, and makes it necessary for the adversary to attack a large fraction of the network before it can achieve any significant gain.
In this paper, basic results on distributed detection are reviewed. In particular, we consider the parallel and the serial architectures in some detail and discuss the decision rules obtained from their optimization based on the Neyman-Pearson (NP) criterion and the Bayes formulation. For conditionally independent sensor observations, the optimality of the likelihood ratio test (LRT) at the sensors is established. General comments on several important issues are made including the computational complexity of obtaining the optimal solutions, the design of detection networks with more general topologies, and applications to different areas.
on in my paper [2], and referred to in the preceding correspondence, is the following. The transmitted waveform is a sequence of M distinct signals, spaced sufficiently far apart that the echos from adjacent signals do not significantly overlap. Each of the M signals is itself a coded sequence of N elemental pulses, each of duration To. The echos from each of the M signals are
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.