Abstract-This work presents a soft hand capable of robustly grasping and identifying objects based on internal state measurements. A highly compliant hand allows for intrinsic robustness to grasping uncertainty, but the specific configuration of the hand and object is not known, leaving undetermined if a grasp was successful in picking up the right object. A soft finger was adapted and combined to form a three finger gripper that can easily be attached to existing robots, for example, to the wrist of the Baxter robot. Resistive bend sensors were added within each finger to provide a configuration estimate sufficient for distinguishing between a set of objects. With one data point from each finger, the object grasped by the gripper can be identified. A clustering algorithm to find the correspondence for each grasped object is presented for both enveloping grasps and pinch grasps. This hand is a first step towards robust proprioceptive soft grasping.
Robotic manipulation systems suffer from two main problems in unstructured human environments: uncertainty and clutter. We introduce a planning framework addressing these two issues. The framework plans rearrangement of clutter using non-prehensile actions, such as pushing. Pushing actions are also used to manipulate object pose uncertainty. The framework uses an action library that is derived analytically from the mechanics of pushing and is provably conservative. The framework reduces the problem to one of combinatorial search, and demonstrates planning times on the order of seconds. With the extra functionality, our planner succeeds where traditional grasp planners fail, and works under high uncertainty by utilizing the funneling effect of pushing. We demonstrate our results with experiments in simulation and on HERB, a robotic platform developed at the Personal Robotics Lab at Carnegie Mellon University.
Abstract-We present the hardware design, software architecture, and core algorithms of HERB 2.0, a bimanual mobile manipulator developed at the Personal Robotics Lab at Carnegie Mellon University. We have developed HERB 2.0 to perform useful tasks for and with people in human environments. We exploit two key paradigms in human environments: that they have structure that a robot can learn, adapt and exploit, and that they demand general-purpose capability in robotic systems. In this paper, we reveal some of the structure present in everyday environments that we have been able to harness for manipulation and interaction, comment on the particular challenges on working in human spaces, and describe some of the lessons we learned from extensively testing our integrated platform in kitchen and office environments.
This work presents a soft hand capable of robustly grasping and identifying objects based on internal state measurements along with a combined system which autonomously performs grasps. A highly compliant soft hand allows for intrinsic robustness to grasping uncertainties; the addition of internal sensing allows the configuration of the hand and object to be detected. The finger module includes resistive force sensors on the fingertips for contact detection and resistive bend sensors for measuring the curvature profile of the finger. The curvature sensors can be used to estimate the contact geometry and thus to distinguish between a set of grasped objects. With one data point from each finger, the object grasped by the hand can be identified. A clustering algorithm to find the correspondence for each grasped object is presented for both enveloping grasps and pinch grasps. A closed loop system uses a camera to detect approximate object locations. Compliance in the soft hand handles that uncertainty in addition to geometric uncertainty in the shape of the object.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.