Physical or psychological stress experienced by a mother during gestation is often associated with serious behavioural and cognitive deficits in newborns. Investigations of protective agents, which could prevent the adverse outcomes of prenatal stress (PS), are warranted. Agmatine is a neurotransmitter putatively involved in the physiological response to stress, and exogenous administration of agmatine has been shown to produce a variety of neuroprotective effects. In this study, we aimed to assess whether prenatal agmatine exposure could ameliorate behavioural and cognitive deficits in female offspring born to prenatally stressed mice. Pregnant Swiss Webster (SW) mice were exposed to physical or psychological stress from the 11th to 17th days of gestation. Agmatine (37.5 mg/kg, i.p.) was administrated 30 min before the induction of stress for seven consecutive days. The pups were assessed using a variety of behavioural tests and molecular assays on postnatal days 40 to 47. Agmatine attenuated impairments in locomotor activity, anxiety‐like behaviour, and drug‐seeking behaviour associated with both physical and psychological PS. Furthermore, agmatine reduced PS‐induced impairments in passive avoidance memory and learning. Neither PS nor agmatine treatment affected the mRNA expression level of hippocampal brain‐derived neurotrophic factor (BDNF) or tyrosine hydroxylase (TH) in the ventral tegmental area (VTA). Taken together, our findings highlight the protective effects of prenatally administered agmatine on PS‐mediated behavioural and cognitive deficits of the offspring. Future studies are needed to elucidate the underlying mechanisms, which could allow for more targeted prenatal treatments.
Exposure to prenatal stress (PS) leads to the offspring's vulnerability towards the development of cognitive and behavioral disorders. Laterodorsal tegmentum (LDT) is a part of the brainstem cholinergic system that is believed to play a pivotal role in the stress-associated progression of anxiety, memory impairment, and addictive behaviors. In this study, we aimed to investigate the electrophysiological alterations of LDT cholinergic neurons and its accompanied behavioral and cognitive outcomes in the offspring of mice exposed to physical or psychological PS. Swiss Webster mice were exposed to physical or psychological stress on the tenth day of gestation. Ex vivo investigations in LDT brain slices of adolescent male offspring were performed to evaluate the effects of two stressor types on the activity of cholinergic neurons. Open field test, elevated plus maze, passive avoidance test, and conditioned place preference were conducted to assess behavioral and cognitive alterations in the offspring. The offspring of both physical and psychological PS-exposed mice exhibited increased locomotor activity, anxiety-like behavior, memory impairment, and preference to morphine. In both early- and late-firing cholinergic neurons of the LDT, stressed groups demonstrated higher firing frequency, lower adaptation ratio, decreased action potential threshold, and therefore increased excitability compared to the control group. The findings of the present study suggest that the hyperexcitability of the cholinergic neurons of LDT might be involved in the development of PS-associated anxiety-like behaviors, drug seeking, and memory impairment.
In Covid-19 cases, elderly patients in long-term care facilities, children younger than five years with moderate symptoms, and patients admitted to ICU or with comorbidities are at a high risk of coinfection due to evidence. Thus, in these patients, antibiotic therapy based on empirical evidence is necessary. Finding appropriate antimicrobial agents, especially with antiviral and anti-inflammatory properties, is a promising approach to target the virus and its complications, hyper-inflammation, and microorganisms resulting co-infection. Moreover, indiscriminate use of antibiotics can be accompanied by Clostridioides difficile colitis, the emergence of resistant microorganisms, and adverse drug reactions, particularly kidney damage and QT prolongation. Therefore, rational administration of efficient antibiotics is an important issue. The main objective of the present review is to provide a summary of antibiotics with possible antiviral activity against SARS-CoV-2 and anti-immunomodulatory effects to guide scientists for further research. Besides, the findings can help health professionals in the rational prescription of antibiotics in Covid-19 patients with a high risk of coinfection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.