The storm water management model (SWMM) is a widely used tool for urban drainage design and planning. Hundreds of peerreviewed articles and conference proceedings have been written describing applications of SWMM. This review focuses on collecting information on model performance with respect to calibration and validation in the peer-reviewed literature. The major developmental history and applications of the model are also presented. The results provide utility to others looking for a quick reference to gauge the integrity of their own unique SWMM application. A gap analysis assesses the model's ability to perform water-quality simulations considering green infrastructure (GI)/low impact development (LID) designs and effectiveness. It is concluded that the level of detail underlying the conceptual model of SWMM versus its overall computational parsimony is well balanced-making it an adequate model for large and medium-scale hydrologic applications. However, embedding a new mechanistic algorithm or providing user guidance for coupling with other models will be necessary to realistically simulate diffuse pollutant sources, their fate and transport, and the effectiveness of GI/LID implementation scenarios.
Environmental decision support systems (EDSSs) are an emerging tool used to integrate the evaluation of highly complex and interrelated physicochemical, biological, hydrological, social, and economic aspects of environmental problems. An EDSS approach is developed to address hot-spot concerns for a water quality trading program intended to implement the total maximum daily load (TMDL) for phosphorus in the Non-Tidal Passaic River Basin of New Jersey. Twenty-two wastewater treatment plants (WWTPs) spread throughout the watershed are considered the major sources of phosphorus loading to the river system. Periodic surface water diversions to a major reservoir from the confluence of two key tributaries alter the natural hydrology of the watershed and must be considered in the development of a trading framework that ensures protection of water quality. An EDSS is applied that enables the selection of a water quality trading framework that protects the watershed from phosphorus-induced hot spots. The EDSS employs Simon's (1960) three stages of the decision-making process: intelligence, design, and choice. The identification of two potential hot spots and three diversion scenarios enables the delineation of three management areas for buying and selling of phosphorus credits among WWTPs. The result shows that the most conservative option entails consideration of two possible diversion scenarios, and trading between management areas is restricted accordingly. The method described here is believed to be the first application of an EDSS to a water quality trading program that explicitly accounts for surface water diversions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.