We present an optical imaging system based on compressive sensing (CS) along with its principal mathematical aspects. Although CS is undergoing significant advances and empowering many discussions and applications throughout various fields, this article focuses on the analysis of a single-pixel camera. This work was the core for the development of a single-pixel camera approach based on active illumination. Therefore, the active illumination concept is described along with the experimental results, which were very encouraging toward the development of compressive-sensing-based cameras for various applications, such as pixel-level programmable gain imaging.
The present study was done to evaluate the effects of different types of abutments on the rate and distribution of stress on the bone surrounding the implant by dynamic finite element analysis method. In this study two ITI abutment models-one-piece and multi-piece-along with fixture, bone, and superstructure have been simulated with the help of company-made models. The maximum Von Mises stress (MVMS) was observed in the distobuccal area of the cortical bone near the crest of implant in two implant models. In the multi-piece abutment, MVMS was higher than the one-piece model (27.9 MPa and 23.3 MPa, respectively). Based on the results of this study, it can be concluded that type of abutment influences the stress distribution in the area surrounding the implant during dynamic loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.