This study examined the effects of 3 wk of either endurance or strength training on plasticity of the neural mechanisms involved in the soleus H reflex and V wave. Twenty-five sedentary healthy subjects were randomized into an endurance group (n = 13) or strength group (n = 12). Evoked V-wave, H-reflex, and M-wave recruitment curves, maximal voluntary contraction (MVC), and time-to-task-failure (isometric contraction at 40% MVC) of the plantar flexors were recorded before and after training. Following strength training, MVC of the plantar flexors increased by 14.4 ± 5.2% in the strength group (P < 0.001), whereas time-to-task-failure was prolonged in the endurance group (22.7 ± 17.1%; P < 0.05). The V wave-to-maximal M wave (V/M(max)) ratio increased significantly (55.1 ± 28.3%; P < 0.001) following strength training, but the maximal H wave-to-maximal M wave (H(max)/M(max)) ratio remained unchanged. Conversely, in the endurance group the V/M(max) ratio was not altered, whereas the H(max)/M(max) ratio increased by 30.8 ± 21.7% (P < 0.05). The endurance training group also displayed a reduction in the H-reflex excitability threshold while the H-reflex amplitude on the ascending limb of the recruitment curve increased. Strength training only elicited a significant decrease in H-reflex excitability threshold, while H-reflex amplitudes over the ascending limb remained unchanged. These observations indicate that the H-reflex pathway is strongly involved in the enhanced endurance resistance that occurs following endurance training. On the contrary, the improvements in MVC following strength training are likely attributed to increased descending drive and/or modulation in afferents other than Ia afferents.
Abstract:The study assessed the effect of velocity of arm movement on the generation of APAs in the contralateral and ipsilateral muscles of individuals with stroke in the sitting position. In the sitting position, 10 healthy and 8 post-stroke subjects reached for an object placed at the scapular plane and mid-sternum height at self-selected and fast velocities. Electromyography was recorded from the anterior deltoid (AD), upper (UT) and lower trapezius (LT), and latissimus dorsi (LD). Kinematic analysis was used to assess peak velocity and trunk displacement. Post-stroke subjects presented a delay of APAs on both sides of the body compared to healthy subjects. Differences were found between the timing of APAs on the ipsilateral and contralateral LD and LT in both movement speeds and in the ipsilateral UT during movement of the non-affected arm at a self-selected velocity. A delay in the contralateral LD in the reaching movement with the non-affected arm at fast velocity was also observed. Trunk displacement was greater in post-stroke subjects. In the sitting position, APAs were delayed in both fast and selfselected movements on both sides in post-stroke subjects, which also presented a higher trunk displacement.
Biometric systems store sensitive personal data that need to be highly protected. However, state-of-the-art template protection schemes generally consist of separate processes, inspired by salting, hashing, or encryption, that limit the achievable performance. Moreover, these are inadequate to protect current state-of-the-art biometric models as they rely on end-to-end deep learning methods. After proposing the Secure Triplet Loss, focused on template cancelability, we now reformulate it to address the problem of template linkability. Evaluated on biometric verification with off-the-person electrocardiogram (ECG) and unconstrained face images, the proposed method proves successful in training secure biometric models from scratch and adapting a pretrained model to make it secure. The results show that this new formulation of the Secure Triplet Loss succeeds in optimizing end-to-end deep biometric models to verify template cancelability, non-linkability, and non-invertibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.