These findings suggest that a CD44high/ALDH1A1high phenotype in melanoma and a CD44high phenotype in SCC can be considered candidates for targeted therapy of skin cancers aiming at CSCs.
Conductive nanofibers have been considered as one of the most interesting and promising candidate scaffolds for cardiac patch applications with capability to improve cell–cell communication. Here, we successfully fabricated electroconductive nanofibrous patches by simultaneous electrospray of multiwalled carbon nanotubes (MWCNTs) on polyurethane nanofibers. A series of CNT/PU nanocomposites with different weight ratios (2:10, 3:10, and 6:10wt%) were obtained. Scanning electron microscopy, conductivity analysis, water contact angle measurements, and tensile tests were used to characterize the scaffolds. FESEM showed that CNTs were adhered on PU nanofibers and created an interconnected web‐like structures. The SEM images also revealed that the diameters of nanofibers were decreased by increasing CNTs. The electrical conductivity, tensile strength, Young's modulus, and hydrophilicity of CNT/PU nanocomposites also enhanced after adding CNTs. The scaffolds revealed suitable cytocompatibility for H9c2 cells and human umbilical vein endothelial cells (HUVECs). This study indicated that simultaneous electrospinning and electrospray can be used to fabricate conductive CNT/PUnanofibers, resulting in better cytocompatibility and improved interactions between the scaffold and cardiomyoblasts.
Many chemotherapeutic regimens have been investigated for advanced unresectable and metastatic pancreatic cancer (PC), but with only minimal improvement in survival and prognosis. Here, we investigated anti-cancer function of free and nanoencapsulated hydroxytyrosol (Hyd) and curcumin (Cur), and its combinations (Hyd-Cur) on PANC-1 cell line. The poly lactide-co-glycolide-co-polyacrylic acid (PLGA-co-PAA) nano-encapsulated Hyd and Cur were synthesized, and MTT assay was performed to evaluate cytotoxic effects of free and nano-encapsulated Hyd, Cur, and Hyd-Cur. Effects of free and nano-encapsulated Hyd, Cur, and Hyd-Cur were evaluated on viability, migration, morphological alterations, colony formation, and apoptosis on PANC-1 cells. We observed that free and nano-encapsulated Hyd, Cur, and Hyd-Cur significantly increased apoptosis rates as well as significantly decreased viability, migration, and colony formation in PANC-1 cells. According to our results, Hyd-Cur combination and nano-encapsulation therapy exerts more profound apoptotic and anti-proliferative effects on PANC-1 cells than free Hyd or Hyd monotherapy.
This study is a meta-analysis of randomized controlled trials involving first-line studies in which immune checkpoint inhibitors were added to chemotherapy and were compared with chemotherapy alone. The primary end point was overall survival (OS). The analyses used random-effects models and the Grading of Recommendations Assessment, Development, and Evaluation system to rate the quality of the evidence. Nine articles were included for qualitative and quantitative synthesis. A meta-analysis of the nine randomized trials showed a significant benefit in terms of OS (hazard ratio: 0.75 [95% CI: 0.66–0.85]; p < 0.01). Only programmed death ligand-1 positive-high cancers derive a significant OS benefit. In this meta-analysis, there is moderate evidence that the addition of immune checkpoint inhibitors to chemotherapy may improve both OS compared with chemotherapy alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.