The recently developed R package INLA (Integrated Nested Laplace Approximation) is becoming a more widely used package for Bayesian inference. The INLA software has been promoted as a fast alternative to MCMC for disease mapping applications. Here, we compare the INLA package to the MCMC approach by way of the BRugs package in R, which calls OpenBUGS. We focus on the Poisson data model commonly used for disease mapping. Ultimately, INLA is a computationally efficient way of implementing Bayesian methods and returns nearly identical estimates for fixed parameters in comparison to OpenBUGS, but falls short in recovering the true estimates for the random effects, their precisions, and model goodness of fit measures under the default settings. We assumed default settings for ground truth parameters, and through altering these default settings in our simulation study, we were able to recover estimates comparable to those produced in OpenBUGS under the same assumptions.
In infectious diseases, it is important to predict the long-term persistence of vaccine-induced antibodies and to estimate the time points where the individual titers are below the threshold value for protection. This article focuses on HPV-16/18, and uses a so-called fractional-polynomial model to this effect, derived in a data-driven fashion. Initially, model selection was done from among the second- and first-order fractional polynomials on the one hand and from the linear mixed model on the other. According to a functional selection procedure, the first-order fractional polynomial was selected. Apart from the fractional polynomial model, we also fitted a power-law model, which is a special case of the fractional polynomial model. Both models were compared using Akaike's information criterion. Over the observation period, the fractional polynomials fitted the data better than the power-law model; this, of course, does not imply that it fits best over the long run, and hence, caution ought to be used when prediction is of interest. Therefore, we point out that the persistence of the anti-HPV responses induced by these vaccines can only be ascertained empirically by long-term follow-up analysis.
Oral cavity and pharynx cancer, even when considered together, is a fairly rare disease. Implementation of multivariate modeling with lung and bronchus cancer, as well as melanoma cancer of the skin, could lead to better inference for oral cavity and pharynx cancer. The multivariate structure of these models is accomplished via the use of shared random effects, as well as other multivariate prior distributions. The results in this paper indicate that care should be taken when executing these types of models, and that multivariate mixture models may not always be the ideal option, depending on the data of interest.
In spatial epidemiology, a scaling effect due to an aggregation of data from a finer to a coarser level is a common phenomenon. This article focuses on addressing this issue using a hierarchical Bayesian modeling framework. We propose three different multiscale models. The first two models use a shared random effect that the finer level inherits from the coarser level. The third one assumes two separate convolution models at the finer and coarser levels. All these models were compared based on deviance information criterion (DIC), Watanabe-Akaike or widely applicable information criterion (WAIC) and predictive accuracy applied on real and simulated data. The results indicate that the models with a shared random effect outperform the other models.Deviance information criterion (DIC), Watanabe-Akaike or widely applicable information criterion (WAIC), predictive accuracy, shared random effect model, scaling effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.