Allyl isothiocyanate (AITC), a dietary phytochemical in some cruciferous vegetables, exhibits promising anticancer activities in many cancer models. However, previous data showed AITC to have a biphasic effect on cell viability, DNA damage and migration in human hepatoma HepG2 cells. Moreover, in a 3D co-culture of HUVEC with pericytes, it inhibited tube formation at high doses but promoted this at low doses, which confirmed its biphasic effect on angiogenesis. siRNA knockdown of Nrf2 and glutathione inhibition abolished the stimulation effect of AITC on cell migration and DNA damage. The biological activity of a novel AITC-conjugated silicon quantum dots (AITC-SiQDs) has been investigated for the first time. AITC-SiQDs showed similar anti-cancer properties to AITC at high doses while avoiding the low doses stimulation effect. In addition, AITC-SiQDs showed a lower and long-lasting activation of Nrf2 translocation into nucleus which correlated with their levels of cellular uptake, as detected by the intrinsic fluorescence of SiQDs. ROS production could be one of the mechanisms behind the anti-cancer effect of AITC-SiQDs. These data provide novel insights into the biphasic effect of AITC and highlight the application of nanotechnology to optimize the therapeutic potential of dietary isothiocyanates in cancer treatment.
The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate‐mediated molecular recognitions using nano‐vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells.
ABSTRACT:The novel thiourea-functionalized silicon nanoparticles (SiNPs) have been successfully synthesized using allylamine and sulforaphane, an important anticancer drug, followed by a hydrosilylation reaction on the surface of hydrogen terminated SiNPs. Their physiochemical properties have been investigated by photoluminescence emission, FTIR and elemental analysis. MTT assay has been employed to evaluate in vitro toxicity in colorectal cancer cells (Caco-2) and primary normal cells (CCD). The results show significant toxicity of thiourea SiNPs after 72 h incubation in the cancer cell line and the toxicity is concentration dependent and saturated for concentrations above 100 µg/mL. Confocal microscopy images have demonstrated the internalization of thiourea-functionalized SiNPs inside the cells. Flow cytometry data has confirmed receptor-mediated targeting in cancer cells. This nanocomposite takes advantage of the EGFR active targeting of the ligand in addition to the photoluminescence properties of SiNPs for bioimaging purposes. The results suggest that this novel nanosystem can be extrapolated for active targeting of the receptors that are overexpressed in cancer cells such as EGFR using the targeting characteristics of thiourea-functionalized SiNPs and therefore encourage further investigation and development of anticancer agents specifically exploiting the EGFR inhibitory activity of such nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.