SUMMARY During aging, there is a progressive loss of volume and function in skeletal muscle that impacts mobility and quality of life. The repair of skeletal muscle is regulated by tissue-resident stem cells called satellite cells (or muscle stem cells [MuSCs]), but in aging, MuSCs decrease in numbers and regenerative capacity. The transcriptional networks and epigenetic changes that confer diminished regenerative function in MuSCs as a result of natural aging are only partially understood. Herein, we use an integrative genomics approach to profile MuSCs from young and aged animals before and after injury. Integration of these datasets reveals aging impacts multiple regulatory changes through significant differences in gene expression, metabolic flux, chromatin accessibility, and patterns of transcription factor (TF) binding activities. Collectively, these datasets facilitate a deeper understanding of the regulation tissue-resident stem cells use during aging and healing.
Upon mild liver injury, new hepatocytes originate from pre-existing hepatocytes. However, if hepatocyte proliferation is impaired, a manifestation of severe liver injury, biliary epithelial cells (BECs) contribute to new hepatocytes through BEC dedifferentiation into liver progenitor cells (LPCs), also termed oval cells or hepatoblast-like cells (HB-LCs), and subsequent differentiation into hepatocytes. Despite the identification of several factors regulating BEC dedifferentiation and activation, little is known about factors involved in the regulation of LPC differentiation into hepatocytes during liver regeneration. Using a zebrafish model of near-complete hepatocyte ablation, we here show that Bmp signaling is required for BEC conversion to hepatocytes, particularly for LPC differentiation into hepatocytes. We found that severe liver injury led to the upregulation of genes involved in Bmp signaling, including smad5, tbx2b, and id2a, in the liver. Bmp suppression did not block BEC dedifferentiation into HB-LCs; however, the differentiation of HB-LCs into hepatocytes was impaired due to the maintenance of HB-LCs in an undifferentiated state. Later Bmp suppression did not affect HB-LC differentiation, but increased BEC number through proliferation. Notably, smad5, tbx2b, and id2a mutants exhibited similar liver regeneration defects as those observed in Bmp-suppressed livers. Moreover, BMP2 addition promoted the differentiation of a murine LPC cell line into hepatocytes in vitro. Conclusions: Bmp signaling regulates BEC-driven liver regeneration via smad5, tbx2b and id2a: it regulates HB-LC differentiation into hepatocytes via tbx2b and BEC proliferation via id2a. Our findings provide insights into promoting innate liver regeneration as a novel therapy.
About eight percent of all human tumors (including 50% of melanomas) carry gain-of-function mutations in the BRAF oncogene. Mutated BRAF and subsequent hyperactivation of the MAPK signaling pathway has motivated the use of MAPK-targeted therapies for these tumors. Despite great promise, however, MAPK-targeted therapies in BRAF-mutant tumors are limited by the emergence of drug resistance. Mechanisms of resistance include genetic, non-genetic and epigenetic alterations. Epigenetic plasticity, often modulated by histone-modifying enzymes and gene regulation, can influence a tumor cell’s BRAF dependency and therefore, response to therapy. In this review, focusing primarily on class 1 BRAF-mutant cells, we will highlight recent work on the contribution of epigenetic mechanisms to inter- and intratumor cell heterogeneity in MAPK-targeted therapy response.
Hyperactivation of the MAPK signaling pathway motivates the clinical use of MAPK inhibitors for BRAF-mutant melanomas. Heterogeneity in differentiation state due to epigenetic plasticity, however, results in cell-to-cell variability in the state of MAPK dependency, diminishing the efficacy of MAPK inhibitors. To identify key regulators of such variability, we screen 276 epigenetic-modifying compounds, individually or combined with MAPK inhibitors, across genetically diverse and isogenic populations of melanoma cells. Following single-cell analysis and multivariate modeling, we identify three classes of epigenetic inhibitors that target distinct epigenetic states associated with either one of the lysine-specific histone demethylases Kdm1a or Kdm4b, or BET bromodomain proteins. While melanocytes remain insensitive, the anti-tumor efficacy of each inhibitor is predicted based on melanoma cells’ differentiation state and MAPK activity. Our systems pharmacology approach highlights a path toward identifying actionable epigenetic factors that extend the BRAF oncogene addiction paradigm on the basis of tumor cell differentiation state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.