It is hypothesized that animals living in polluted environments possess antimicrobials to counter pathogenic microbes. The fact that snakes feed on germ-infested rodents suggests that they encounter pathogenic microbes and likely possess antimicrobials. The venom is used only to paralyze the rodent, but the ability of snakes to counter potential infections in the gut due to disease-ridden rodents requires robust action of the immune system against a broad range of pathogens. To test this hypothesis, crude lysates of different organs of Naja naja karachiensis (black cobra) were tested for antimicrobial properties. The antimicrobial activities of extracts were tested against selected bacterial pathogens (neuropathogenic Escherichia coli K1, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Streptococcus pneumonia), protist (Acanthamoeba castellanii), and filamentous fungus (Fusarium solani). The findings revealed that plasma and various organ extracts of N. n. karachiensis exhibited antimicrobial activity against E. coli K1, MRSA, P. aeruginosa, S. pneumoniae, A. castellanii, and F. solani in a concentrationdependent manner. The results of this study are promising for the development of new antimicrobials.
Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections.
Antibacterial strategies to eradicate superbugs from hospitals/nursing homes have had limited success, suggesting the need for employing innovative preventative measures and better understanding of the prevalence of microbial pathogens in close proximity of susceptible populations. A total of 120 environmental samples were collected from the Aga Khan University hospital. Amoebae were identified using morphological characteristics as well as PCR using genus-specific primers, while bacteria were identified using standard biochemical testing. Out of 120 samples tested, 52 (43.3 %) samples were positive for Acanthamoeba, while all 120 (100 %) samples were positive for bacteria. Following bacterial identification, samples showed mixed bacterial populations. Out of 120 samples, 76 (63.3 %) samples were positive for Bacillus spp., 64 (53.3 %) samples were positive for Corynebacterium spp., 32 (26.6 %) samples were positive for Staphylococcus spp., and 9 (7.5 %) samples were positive for Micrococcus spp. The antibiotic susceptibility showed that all bacterial isolates recovered were multiple drug-resistant. The current findings suggest that Acanthamoeba and bacteria coexist in a clinical environment. Given that Acanthamoeba can harbor bacteria, anti-amoebic approaches may represent a strategy in eradicating "superbugs" from the clinical setting in addition to the current measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.