Antipsychotic drugs alter the activity of dopamine neurons in the ventral tegmental area (A10) and substantia nigra pars compacta (A9). As there is a dense projection of orexin neurons from the lateral hypothalamus to A10 dopaminergic neurons, and some antipsychotics have been shown to increase the expression of c-fos in orexin-containing cells in the hypothalamus, we hypothesized that stimulation of orexin receptors plays a role in the effects of antipsychotics on the activity of A9 and A10 dopamine cells. Single-unit recordings in anesthetized rats demonstrated the central effects of the selective orexin-1 receptor antagonist SB-334867 (2 mg/kg, intravenous), as it reversed the excitatory effects of orexin-A administration (6 mg, intracerebroventricular) on the activity of locus coeruleus (LC) cells. Recordings from midbrain dopamine neurons showed that acute administration of SB-334867 alone did not alter the number of spontaneously active A9 or A10 cells, but did reverse: (1) the increase in the number of spontaneously active A9 and/or A10 dopamine cells caused by the acute administration of haloperidol (1 mg/kg, subcutaneous) or olanzapine (10 mg/kg, s.c.) and (2) the decrease in the number of spontaneously active A9 and/or A10 dopamine cells caused by the chronic administration of haloperidol (1 mg/kg/day  21 days, s.c.) or olanzapine (10 mg/kg/day  21 days, s.c.). However, SB-334867 did not block a different electrophysiological effect of olanzapine, as it did not block the olanzapine-induced activation of LC cells. These results indicate that activation of orexin-1 receptors plays an important role on the effects of antipsychotic drugs on dopamine neuronal activity and may play an important role in the clinical effects of antipsychotic drugs. Neuropsychopharmacology (2007) 32, 786-792.
We have previously shown that the orexin-1 antagonist SB-334867 blocks the electrophysiological effects of haloperidol and olanzapine on the activity of A9 and A10 dopamine neurons. To evaluate if orexin-1 antagonists might block other effects of antipsychotic drugs in animals, we examined the effects of SB-334867 on behavioral, neurochemical, and neuroendocrine effects of antipsychotic drugs. Pretreatment with SB-334867 (0.01-10 mg/kg, intraperitoneal [IP]) significantly decreased the catalepsy produced by the administration of haloperidol (1 mg/kg, subcutaneous [SC]), risperidone (2 mg/kg, SC), and olanzapine (10 mg/kg, SC). Administration of SB-334467 also reversed catalepsy after it had been established in animals pretreated 2 hours earlier with haloperidol. However, pretreatment with SB-334867 (1-10 mg/kg, IP) did not block the decreases in exploratory locomotor activity produced by administration of haloperidol (0.1 mg/kg, SC) or risperidone (0.3 mg/kg, SC). In addition, pretreatment with SB-334867 (1-10 mg/kg, IP) neither blocked the increased levels of dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens or striatum nor the elevation in serum prolactin produced by administration of haloperidol (0.1 mg/kg, SC) and risperidone (1 mg/kg, SC). Administration of SB-334867 alone neither changed locomotor activity and DOPAC or prolactin levels nor produced catalepsy. These results show that orexin-1 antagonists block the catoleptogenic effects of antipsychotics but do not block other locomotor, neurochemical, or neuroendocrine effects of antipsychotics. Because catalepsy is thought to be a good predictor of extrapyramidal symptoms in humans, treatment with orexin-1 antagonists might decrease the occurrence or severity of antipsychotic treatment-emergent extrapyramidal symptoms in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.