Context: Loxoprofen (LOXO) is a non-steroidal anti-inflammatory drug. Repeated oral administrations induce gastrointestinal side effects. Patches are a promising alternative. Objective: The aim of this study was to investigate the effects of organic amines on the skin permeation of LOXO and finally design a patch with a comparable permeation profile and pharmacodynamic effects to the commercial LOXONA Õ plaster. Materials and methods: The effects of organic amines were assessed by flux values of LOXO from isopropyl myristate (IPM), using horizontal diffusion cell and rabbit skin. FTIR spectroscopy was used to confirm ion-pair formation. Anti-inflammatory and analgesic activity assessments were performed in the adjuvant arthritis rat model and acetic acid-induced writhing syndrome in mouse, separately. Results and discussion: Results showed that triethylamine (TEA) was the most potential candidate in IPM, with the highest flux of 499.75 ± 32.40 mg/cm 2 /h. In patch, the highest flux of 369.37 ± 34.32 mg/cm 2 /h was still obtained by LOXO-TEA. Combined with penetration enhancers, the cumulative amounts were further increased in presence of 5% IPM, which exhibited a flux of 840.04 ± 66.38 mg/cm 2 /h as two times of the commercial one. Ultimately, anti-inflammatory and analgesic activity assessment presented that a comparable pharmacodynamic activity with the commercial one could be obtained by the patch we designed. Additionally, we also found that LOXO patch applied topically exerted a systemic effect, and the effect was dose-dependent. Conclusion: It was feasible for LOXO patch design by combination of ion-pair technology and chemical enhancers.
Objective. The aim of this study was to explore the hypolipidemic effect and mechanism of Dalbergia odorifera T. C. Chen leaf extract. Methods. The hypolipidemic effect of D. odorifera leaf extract was investigated using a hyperlipidemic rat model. Then, its mechanism was predicted using network pharmacology methods and verified using western blotting. Results. Compared with the levels in the model group, the serum levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) decreased significantly, whereas the serum level of high-density lipoprotein cholesterol (HDL-C) increased dramatically after treatment with the extract. The degrees of hepatocyte steatosis and inflammatory infiltration were markedly attenuated in vivo. Then, its hyperlipidemic mechanism was predicted using network pharmacology-based analysis. Thirty-five key targets, including sterol regulatory element-binding protein cleavage-activating protein (SCAP), sterol regulatory element-binding protein-2 (SREBP-2), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), low-density lipoprotein receptor (LDLR), and ten signaling pathways, were associated with hyperlipidemia. Finally, it was verified that the extract downregulated the protein levels of SCAP, SREBP-2, and HMGCR, and upregulated protein levels of LDLR. Conclusion. These findings provided additional evidence of the hypolipidemic effect of D. odorifera leaf extract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.